欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年强化训练北师大版九年级数学下册第三章-圆专题测评试题(含详细解析).docx

    • 资源ID:30726563       资源大小:1.04MB        全文页数:30页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年强化训练北师大版九年级数学下册第三章-圆专题测评试题(含详细解析).docx

    北师大版九年级数学下册第三章 圆专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知中,则圆周角的度数是( )A50°B25°C100°D30°2、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD3、计算半径为1,圆心角为的扇形面积为( )ABCD4、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2005、如图,AB是O的直径,CD为弦,CDAB于点E,则下列结论中不成立是( )A弧AC弧ADB弧BC弧BDCCEDEDOEBE6、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定7、如图,点A、B、C在O上,BAC56°,则BOC的度数为( )A28°B102°C112°D128°8、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD9、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD210、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得2、已知O的半径为10,直线AB与O相切,则圆心O到直线AB的距离为_3、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)4、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58°,则ACB的大小是_5、如图,PA,PB分别切O于点A,B,Q是优弧上一点,若P=40°,则Q的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,AB为O的直径,弦于,连接,过作,交O于点,连接DF,过作,交DF的延长线于点(1)求证:BG是O的切线;(2)若,DF=4,求FG的长2、尝试:如图,中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,直接写出图中的一对相似三角形_;拓展:如图,在中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,若,求的长;应用:如图,在中,将绕点A按逆时针方向旋转一周,在旋转过程中,当点B的对应点恰好落在的边所在的直线上时,直接写出此时点C的运动路径长3、如图,O是ABC的外接圆,AB是O的直径,ABCD于点E,P是AB延长线上一点,且BCPBCD(1)求证:CP是O的切线;(2)连接DO并延长,交AC于点F,交O于点G,连接GC若O的半径为5,OE3,求GC和OF的长4、如图,PA,PB与O相切,切点为A,B,CD与O相切于点E,分别交PA,PB于点D,C若PA,PB的长是关于x的一元二次方程x2mx+m10的两个根(1)求m的值;(2)求PCD的周长5、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形-参考答案-一、单选题1、B【分析】根据圆周角定理,即可求解【详解】解: , 故选:B【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键2、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60°然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90°,CDB=30°,COB=2CDB=60°,OCE=30°,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键3、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键4、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路5、D【分析】根据垂径定理解答【详解】解:AB是O的直径,CD为弦,CDAB于点E,弧AC弧AD,弧BC弧BD,CEDE,故选:D【点睛】此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键6、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键7、C【分析】直接由圆周角定理求解即可【详解】解:A56°,A与BOC所对的弧相同,BOC2A112°,故选:C【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半8、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.9、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键10、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用二、填空题1、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键2、10【分析】根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案【详解】解:O的半径为10,直线AB与O相切,圆心到直线AB的距离等于圆的半径,d=10;故答案为:10;【点睛】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键同时注意圆心到直线的距离应是非负数3、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键4、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.5、70°度【分析】连接OA、OB,根据切线性质可得OAP=OBP=90°,再根据四边形的内角和为360°求得AOB,然后利用圆周角定理求解即可【详解】解:连接OA、OB,PA,PB分别切O于点A,B,OAP=OBP=90°,又P=40°,AOB=360°90°90°40°=140°,Q=AOB=70°,故答案为:70°【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键三、解答题1、(1)见解析;(2)【分析】(1)由题意根据切线的判定证明半径OBBG即可BG是O的切线;(2)根据题意连接CF,根据圆周角定理和中位线性质得出,进而依据等边三角形和四边形BEDG是矩形进行分析即可得出FG的长【详解】解:(1)证明: C,A,D,F在O上,CAF=90°, D=CAF=90° ABCE,BGDF, BED=G=90° 四边形BEDG中,ABG=90° 半径OBBG BG是O的切线(2)连接CF, CAF=90°, CF是O的直径 OC=OF 直径ABCD于E, CE=DE OE是CDF的中位线 ,AFD=30°, ACD=AFD=30° OA=OC, AOC是等边三角形 CEAB, E为AO中点, OA=2OE=4,OB=4 BED=D=G=90°, 四边形BEDG是矩形 DG=BE=6 【点睛】本题考查圆的综合问题,熟练掌握切线的判定和圆周角定理和中位线性质以及等边三角形和矩形性质是解题的关键.2、尝试:;拓展:;应用:点的运动路径长为或或或或【分析】尝试:根据是由ABC旋转得到的,可得到,即可推出,则;拓展:由AC=BC,ACB=90°,可得,同(1)可证,得到,由此求解即可;应用:分点在延长线上时,点在的延长线上时,当点落在边所在直线上时,当点落在边所在直线上时,当点与点重合时,点旋转一周时,五种情况讨论求解即可得到答案【详解】解:尝试:,理由如下:是由ABC旋转得到的,即,;故答案为:;拓展:AC=BC,ACB=90°,同(1)原理可证,;应用:在中,当点落在所在直线上时,有两种情况:若点在延长线上时,如图所示:由旋转的旋转可得:,点C运动的路径即为,;若点在的延长线上时,如图所示,此时点,三点共线,点C运动的路径即为,由旋转的性质可得,旋转角,弧;当点落在边所在直线上时,如图所示,点C运动的路径即为,由旋转的性质可得,弧;当点落在边所在直线上时,如图所示,此时点,三点共线,旋转角为,弧当点与点重合时,点旋转一周,弧当点的对应点恰好落在的边所在直线上时,点的运动路径长为或或或或【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式3、(1)见解析;(2),【分析】(1)连接OC,由已知可得OCBBCD90°,进而根据BCPBCD,等量代换可得OCBBCP90°,即可证明CP是O的切线;(2)证明OE为DCG的中位线,由,证明GCFOAF,进而列出比例式代入数值进行计算即可【详解】(1)证明:连接OCOBOC,OBCOCB ABCD于点E,CEB90° OBCBCD90° OCBBCD90° BCPBCD,OCBBCP90° OCCPCP是O的切线 (2)ABCD于点E,E为CD中点 O为GD中点,OE为DCG的中位线GC2OE6, GCFOAF 即GFOF5,OF【点睛】本题考查了切线的性质判定,相似三角形的性质与判定,掌握切线的性质与判定是解题的关键4、(1);(2)2【分析】(1)根据切线长定理可得,则一元二次方程的判别式为0,进而即可求得的值;(2)根据(1)的结论求得的长,CD与O相切于点E,则,根据PCD的周长即可求解【详解】解: PA,PB与O相切,PA,PB的长是关于x的一元二次方程x2mx+m10的两个根解得(2) PA,PB与O相切, CD与O相切于点E,PCD的周长【点睛】本题考查了切线长定理,一元二次方程根的判别式,解一元二次方程,掌握切线长定理是解题的关键5、(1)见解析;(2)BC,90°,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90°即可【详解】(1)作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC=BCAB是直径,ACB=90°(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90°,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键

    注意事项

    本文(2022年强化训练北师大版九年级数学下册第三章-圆专题测评试题(含详细解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开