2022年最新精品解析北师大版九年级数学下册第一章直角三角形的边角关系定向训练试卷(名师精选).docx
-
资源ID:30727130
资源大小:662.10KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新精品解析北师大版九年级数学下册第一章直角三角形的边角关系定向训练试卷(名师精选).docx
九年级数学下册第一章直角三角形的边角关系定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小王在高台上的点A处测得塔底点C的俯角为,塔顶点D的仰角为,已知塔的水平距离ABa,则此时塔高CD的长为()Aasin+asin Batan+atan CD2、ABC中,tanA1,cosB,则ABC的形状是()A等腰三角形B直角三角形C等腰直角三角形D锐角三角形3、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里 B120海里C海里D海里4、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD5、等腰三角形的底边长,周长,则底角的正切值为( )ABCD6、如图,AB是河堤横断面的迎水坡,堤高AC,水平距离BC1,则斜坡AB的坡度为()ABC30°D60°7、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE8、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46°,若测得PC50米,则小河宽PA为()A50sin44°米B50cos44°C50tan44°米D50tan46°米9、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD10、如图,在ABC中,C=90°,ABC=30°,D是AC的中点,则tanDBC的值是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、ABC中,B为锐角,cosB,AB,AC2,则ACB的度数为_2、比较大小:tan46°_cos46°3、如图,大坝的横截面是一个梯形,坝顶宽,坝高,斜坡的坡度,斜坡的坡度,则坡底宽_4、如图,ABC中,BA=CB=AD,ACD30°,tanBAC,CD6+8,则线段BC长度为 _5、在ABC中,那么的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,平地上两栋建筑物AB和CD相距30m,在建筑物AB的顶部测得建筑物CD底部的俯角为26.6°,测得建筑物CD顶部的仰角为45°求建筑物CD的高度(参考数据:sin26.6°0.45,cos26.6°0.89,tan26.6°0.50)2、计算:3、在平行四边形ABCD中,E为AB上一点,连接CE,F为CE上一点,且DFE=A(1)求证:DCFCEB;(2)若BC=4,CE=,tanCDF=,求线段BE的长4、如图,已知反比例函数与一次函数相交于、两点,轴于点若的面积为,且(1)求出反比例函数与一次函数的解析式;(2)请直接写出点的坐标,并指出当在什么范围取值时,使5、计算:-参考答案-一、单选题1、B【分析】根据直角三角形锐角三角函数即可求解【详解】解:在中,在中,故选:B【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是掌握直角三角形锐角三角函数2、C【分析】先根据ABC中,tanA=1,cosB=求出A及B的度数,进而可得出结论【详解】解:ABC中,tanA=1,cosB=,A=45°,B=45°,C=90°,ABC是等腰直角三角形故选:C【点睛】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键3、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90°,CAD=45°,BAD=60°,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键4、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB,C=90°,由翻折变换的性质得,CD=CD=4,C=C=90°,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边5、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键6、A【分析】直接利用坡度的定义得出,斜坡AB的坡度为:,进而得出答案【详解】解:由题意可得:ACB90°,则斜坡AB的坡度为:,故选:A【点睛】此题主要考查了解直角三角形的应用,正确掌握坡度的定义是解题关键7、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90°,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90°,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90°,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90°,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90°,CBF+BEA90°,BGE90°,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解8、C【分析】先根据APPC,可求PCA=90°-46°=44°,在RtPCA中,利用三角函数AP=米即可【详解】解:APPC,PCA+A=90°,A=46°,PCA=90°-46°=44°,在RtPCA中,tanPCA=,PC=50米,AP=米故选C【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键9、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键10、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90°,ABC=30°,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键二、填空题1、60°或120°【分析】根据题意,由于的长没有确定,故分类讨论,分是锐角和钝角两种情况画出图形,解直角三角形即可【详解】解:如图,当是锐角时,过点作于点, cosB,AB,AC2,如图,当是钝角时,过点作的延长线于点, cosB,AB,AC2,故答案为:或【点睛】本题考查了解斜三角形,构造直角三角形并分类讨论是解题的关键2、【分析】根据tan46°tan45°=1cos46°即可比较【详解】46°45°tan46°tan45°=11cos46°tan46°cos46°故答案为:【点睛】此题主要考查三角函数值的大小比较,解题的关键是熟知三角函数的性质3、60【分析】过点作于点,过点作于点,先根据矩形的判定与性质可得,再根据坡度的定义求出的长,然后根据线段的和差即可得【详解】解:如图,过点作于点,过点作于点,则,四边形是矩形,斜坡的坡度,斜坡的坡度,即,解得,则坡底宽,故答案为:60【点睛】本题考查了解直角三角形的应用(坡度)、矩形的判定与性质等知识点,掌握理解坡度的定义(坡面的铅直高度和水平宽度的比叫做坡度)是解题关键4、【分析】作AFDC于点F,作BEAC于点E,首先根据tanBAC表示出,然后根据等腰三角形的性质和30°角直角三角形的性质表示出AC和AF的长度,然后根据勾股定理表示出FC和FD的长度,最后根据CD的长度列方程求解即可【详解】如图所示,作AFDC与点F,作BEAC与点E,tanBAC,BEAC设,BEACAFDC,ACD30°在中,在中,解得:,故答案为:10【点睛】此题考查了勾股定理,解直角三角形,等腰三角形的性质,30°角直角三角形的性质,解题的关键是根据题意正确作出辅助线,以及熟练掌握以上知识点和性质定理5、6【分析】根据解三角形可直接进行求解【详解】解:在ABC中,;故答案为6【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键三、解答题1、建筑物CD的高度约为45m【分析】如图所示,过点A作AECD于E,先证明AE=CE,然后证明四边形ABDE是矩形,则AE=BD=30m,CE=AE=30m,由此即可得到答案【详解】解:如图所示,过点A作AECD于E,AEC=AED=90°,CAE=45°,C=45°,C=CAE,AE=CE,ABBD,CDBD,ABD=BDE=90°,四边形ABDE是矩形,AE=BD=30m,CE=AE=30m,CD=CE+DE=45m,答:建筑物CD的高度约为45m【点睛】本题主要考查了矩形的性质与判定,等腰直角三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线求解2、7【分析】先计算乘方,零指数幂,化简绝对值,代入特殊角三角函数值,然后再计算【详解】解:原式413437【点睛】本题考查实数的混合运算,熟练掌握上述基本知识,熟记特殊角三角函数值是解题关键3、(1)证明见解析(2)BE=【分析】(1)由平行四边形的性质有AB/CD,AD/BC,可得DFE=A,DFC=B,故DCFCEB(2)过点E作EHCB交CB延长线于点H,由题意可设EH=x,CH=2x,由勾股定理即可得EH=3,CH=6,再由勾股定理即可求得BE=(1)证明:在平行四边形ABCD中,AB/CD,AD/BCDCE=BEC,A+B=180°DFE+DFC=180°又DFE=A DFC=B DCFCEB (2)DCFCEBCDF=ECB tanCDF= tanECB=过点E作EHCB交CB延长线于点H在RtCEH中设EH=x,CH=2x CE=CE=x=3,则有EH=3,CH=6 BC=4BH=6-4=2在RtEBH中有BE=则BE=【点睛】本题考查了平行四边形的性质,相似三角形的判定及性质解直角三角形以及勾股定理,第二问作辅助线将三角函数值转化到直角三角形中是解题的关键4、(1),;(2),或【分析】(1)先根据正切函数的定义可得点的坐标,再利用待定系数法即可得;(2)联立反比例函数和一次函数的解析式可得点的坐标,再利用函数图象法即可得【详解】解:(1)设点的坐标为,则,的面积为,且,解得或(不符题意,舍去),将点代入得:,则反比例函数的解析式为;将点代入得:,解得,则一次函数的解析式为;(2)联立,解得或,则点的坐标是,表示的是反比例函数的图象位于一次函数的图象的上方,则或【点睛】本题考查了反比例函数与一次函数的综合、正切,熟练掌握待定系数法是解题关键5、【分析】根据负整数指数幂,特殊角的三角函数值,零指数幂的运算法则求解即可【详解】解:【点睛】此题考查了负整数指数幂,特殊角的三角函数值,零指数幂运算,解题的关键是熟练掌握负整数指数幂,特殊角的三角函数值,零指数幂的运算法则