2022年精品解析沪科版九年级数学下册第26章概率初步必考点解析试卷(无超纲).docx
-
资源ID:30727473
资源大小:336.82KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析沪科版九年级数学下册第26章概率初步必考点解析试卷(无超纲).docx
沪科版九年级数学下册第26章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “2022年春节期间,中山市会下雨”这一事件为( )A必然事件B不可能事件C确定事件D随机事件2、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )ABCD3、下列说法中正确的是( )A“打开电视,正在播放新闻联播”是必然事件B某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C想了解某市城镇居民人均年收入水平,宜采用抽样调查D我区未来三天内肯定下雪4、下列事件中,属于必然事件的是( )A小明买彩票中奖B在一个只有红球的盒子里摸球,摸到了白球C任意抛掷一只纸杯,杯口朝下D三角形两边之和大于第三边5、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误6、关于“明天是晴天的概率为90”,下列说法正确的是( )A明天一定是晴天B明天一定不是晴天C明天90的地方是晴天D明天是晴天的可能性很大7、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾”你认为池塘主的做法( )A有道理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼8、下列说法正确的是()A“买中奖率为的奖券10张,中奖”是必然事件B“汽车累积行驶10000km,从未出现故障”是不可能事件C气象局预报说“明天的降水概率为70%”,意味着明天一定下雨D“经过有交通信号灯的路口,遇到红灯”是随机事件9、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A0.560B0.580C0.600D0.62010、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是_2、大数据分析技术为打赢疫情防控阻击战发挥了重要作用如图是小明同学的吉祥码示意图,用黑白打印机打印在边长为2cm的正方形区域内,图中黑色部分的总面积为2.4cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为 _3、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为_4、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为_5、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_(填“大于”“小于”或“等于”)是白球的可能性三、解答题(5小题,每小题10分,共计50分)1、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_;恰好是黄球的概率为_(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率2、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科小红在高一上期期末结束后,需要选择高考科目(1)小红在“首选科目”中,选择历史学科的概率是_(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率3、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图(1) ,类所在扇形的圆心角的度数是 ,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;(3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率类别分数段频数(人数)AB16C24D64、4张相同的卡片上分别写有数字0、1、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来(1)第一次抽取的卡片上数字是非负数的概率为_;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)5、 “垃圾分类”进校园,锦江教育出实招锦江区编写小学生垃圾分类校本实施指导手册,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶(1)“小明投放的垃圾恰好是有害垃圾”这一事件是_(请将正确答案的序号填写在横线上)必然事件 不可能事件 随机事件(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率A有害垃圾 B厨余垃圾C可回收垃圾 D其他垃圾-参考答案-一、单选题1、D【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:业睡机读体业(业,睡)(业,机)(业,读)(业,体)睡(睡,业)(睡,机)(睡,读)(睡,体)机(机,业)(机,睡)(机,读)(机,体)读(读,业)(读,睡)(读,机)(读,体)体(体,业)(体,睡)(体,机)(体,读)根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种, 抽到“作业”和“手机”的概率为:,故选:C【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键3、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】A. “打开电视,正在播放新闻联播”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键 4、D【分析】根据事件发生的可能性大小判断即可【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可【详解】由表可知该种结果出现的概率约为掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6向上的点数与4相差1有3、5掷一枚质地均匀的骰子,向上的点数与4相差1的概率为甲的答案正确又“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为乙的答案正确综上所述甲、乙答案均正确故选C【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率6、D【分析】根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得【详解】解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,故选:D【点睛】题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键7、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;池塘主的做法有道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键8、D【分析】根据随机事件的定义,对选项中的事件进行判断即可【详解】解:A“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;B“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;C“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;D“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意故选:D【点睛】本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键9、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.10、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:故选C【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.二、填空题1、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解2、【分析】根据几何概率的求解方法:用黑色区域的面积除以正方形面积即可得到答案【详解】解:由题意得:点落入黑色部分的概率为,故答案为:【点睛】本题主要考查了几何概率,解题的关键在于能够熟练掌握几何概率的求解方法3、【分析】画树状图表示所有等可能的结果,再计算点在直线上的概率【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为,故答案为:【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键4、【分析】根据简单概率的概率公式进行计算即可,概率=所求情况数与总情况数之比【详解】解:共有5中等可能结果,其中大于2的有3种,则从中随机摸出一个小球,其标号大于2的概率为故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键5、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可【详解】解:袋子里有3个红球和5个白球,红球的数量小于白球的数量,从中任意摸出1只球,是红球的可能性小于白球的可能性故答案为:小于【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等三、解答题1、(1);(2)两次都是红球的概率为【分析】(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可(1)解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,其中是黄球的可能有一种,故答案为:;(2)四个球简写为“红1,红2,黄,蓝”,列表法为:红1红2黄蓝红1(红1,红1)(红1,红2)(红1,黄)(红1,蓝)红2(红2,红1)(红2,红2)(红2,黄)(红2,蓝)黄(黄,红1)(黄,红2)(黄,黄)(黄,蓝)蓝(蓝,红1)(蓝,红2)(蓝,黄)(蓝,蓝)共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为:【点睛】题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键2、(1)(2)【分析】(1)根据概率的公式计算可得答案;(2)画树状图,共有12个等可能的结果,该同学恰好选中思想政治和地理化两科的结果有2个,再由概率公式求解即可(1)解:选择物理、历史共有2中等可能结果,选择历史学科的结果有1种,所以选择历史学科的概率是;(2)假设A表示化学、B表示生物、C表示思想政治、D表示地理,画树状图如下图:共有12个等可能的结果,该同学恰好选中思想政治和地理的结果有2个,所以该同学恰好选中思想政治和地理的概率为【点睛】此题考查了概率的求法,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,还考查了用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,做题的关键是掌握概率的求法3、(1)2,图见解析;(2)450人;(3)【分析】(1)先根据类的信息可求出调查的总人数,由此即可得出的值,再求出类所占百分比,然后乘以可得圆心角的度数,最后根据类的人数补全频数分布直方图即可;(2)利用720乘以成绩在范围内的学生所占百分比即可得;(3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得【详解】解:(1)调查的总人数为(人),则,类所在扇形的圆心角的度数是,故答案为:2,补全频数分布直方图如图所示:(2)(人),答:估计该校成绩在范围内的学生人数为450人;(3)把类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种,则所求的概率为,答:恰好只选中其中1名留守学生进行经验交流的概率为【点睛】本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键4、(1)(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案(1)解:第一次抽取的卡片上数字是非负数的概率为,故答案为:(2)解:列表如下:01-2301-231-1-32-22353-3-2-5由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率乙获胜的概率,此游戏公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率所求情况数与总情况数之比5、(1)(2)【分析】(1)根据随机事件的相关概念可直接进行求解;(2)根据列表法可直接进行求解概率(1)解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;故答案为;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种【点睛】本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键