2022年最新北师大版七年级数学下册第六章概率初步综合练习试题.docx
-
资源ID:30727825
资源大小:222.28KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新北师大版七年级数学下册第六章概率初步综合练习试题.docx
北师大版七年级数学下册第六章概率初步综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD2、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD3、一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为()ABCD4、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为( )ABCD5、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )ABCD6、下列事件中,属于必然事件的是( )A通常加热到100°C时,水沸腾B扔一枚硬币,结果正面朝上C在只装了红球的袋子中摸到白球D掷一枚质地均匀的正方体骰子,向上的一面点数是67、同时抛两枚质地均匀的正方体骰子,骰子的六个面上分别刻有的点数,则下列事件中是必然事件的是( )A点数之和为奇数B点数之和为偶数C点数之和大于D点数之和小于8、袋中有除颜色以外其余都相同的红球个,黄球个,摇匀后,从中任意摸出个球,记录颜色后放回、摇匀,再从中任意摸出个球,像这样有放回地先后摸球次,摸到的都是红球,则第次摸到红球的概率是( )ABCD9、下列成语中,描述确定事件的个数是()守株待兔;塞翁失马;水中捞月;流水不腐;不期而至;张冠李戴;生老病死A5B4C3D210、一个袋子中放有4个红球和6个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是_2、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是_3、判断下列事件的类型:(必然事件,随机事件,不可能事件)(1)掷骰子试验,出现的点数不大于6_(2)抽签试验中,抽到的序号大于0_(3)抽签试验中,抽到的序号是0_(4)掷骰子试验,出现的点数是7_(5)任意抛掷一枚硬币,“正面向上”_(6)在上午八点拨打查号台114,“线路能接通”_(7)度量五边形外角和,结果是720度_4、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有_个5、从,1,2三个数中任取一个,作为一次函数的k值,则所得一次函数中y随x的增大而增大的概率是_三、解答题(5小题,每小题10分,共计50分)1、不透明袋子中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别从袋子中随机取出1个球(1)能够事先确定取出的球是哪种颜色吗?(2)取出每种颜色的球的概率会相等吗?(3)取出哪种颜色的球的概率最大?(4)如何改变各色球的数目,使取出每种颜色的球的概率都相等(提出一种方法即可)?2、小明就本班同学的上学方式进行调查统计如图是他通过收集数据后绘制的两幅不完整的统计图请你根据图中提供的信息解答下列问题:(1)该班共有 名同学;(2)将条形统计图补充完整;(3)在全班同学中随机选出一名同学来宣读交通安全法规,选出的恰好是骑车上学的同学的概率是 ;(4)若全校共有2000名学生,估计步行上学的学生有多少名学生?3、桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃从中随机抽取1张(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?4、把一副普通扑克牌中的13张黑桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:(1)抽出的牌是黑桃6;(2)抽出的牌是黑桃10;(3)抽出的牌带有人像;(4)抽出的牌上的数小于5;(5)抽出的牌的花色是黑桃5、 “一方有难,八方支援”2020年初武汉受到新型冠状肺炎影响,沈阳某医院准备从甲、乙、丙三位医生和A,B,C三名护士中选取一位医生和一名护士支援武汉用树状图或列表法求恰好选中医生甲和护士A的概率-参考答案-一、单选题1、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键2、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比3、D【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数即可求解【详解】解:口袋中有2个红球,3个白球,P(红球)故选D【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),掌握随机事件概率的求法是解题关键4、D【分析】直接利用概率公式求出即可【详解】解:共四名候选人,男生3人,选到男生的概率是:故选:D【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比5、B【分析】由题意,只要求出阴影部分与矩形的面积比即可【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:;故选:B【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性用到的知识点为:概率=相应的面积与总面积之比6、A【分析】根据事件发生的可能性大小判断相应事件的类型【详解】解:A、通常,水加热到100会沸腾是必然事件,故本选项符合题意;B、扔一枚硬币,结果正面朝上是随机事件,故本选项不符合题意;C、在只装了红球的袋子中摸到白球是不可能事件,故本选项不符合题意;D、掷一枚质地均匀的正方体骰子,向上的一面点数是6是随机事件,故本选项不符合题意;故选:A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可【详解】解:A、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;B、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;C、骰子的最大点数是12,两次点数之和不可能大于13,不是必然事件,不符合题意;D、骰子的最大点数是12,两次点数之和小于13,是必然事件,符合题意;故选D【点睛】本题主要考查了必然事件的定义,熟知定义是解题的关键8、B【分析】根据概率的计算公式直接解答即可【详解】解:袋中有除颜色以外其余都相同的红球个,黄球个共5个球,第次摸到红球的概率是,故选:B【点睛】此题考查简单的概率计算,熟记概率计算公式并理解事件的意义是解题的关键9、C【分析】根据个成语的意思,逐个分析判断是否为确定事件即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】解守株待兔,是随机事件;塞翁失马,是随机事件;水中捞月,是不可能事件,是确定事件;流水不腐,是确定事件;不期而至,是随机事件;张冠李戴,是随机事件;生老病死,是确定事件综上所述,是确定事件,共3个故选C【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键10、C【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:袋子里装有10个球,4个红球,6个白球,摸出红球的概率:故选:C【点睛】本题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=二、填空题1、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解2、6【分析】随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数【详解】解:记摸出一个球是红球为事件白球有个故答案为:【点睛】本题考察了概率的定义解题的关键与难点在于理解概率的定义,求出球的总数3、必然事件 必然事件 不可能事件 不可能事件 随机事件 随机事件 不可能事件 【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:(1)骰子最大的点数是6,所以掷骰子试验,出现的点数不大于6是必然事件;(2)抽签试验中,序号都大于0,抽到的序号大于0是必然事件;(3)抽签试验中,序号都大于0,抽到的序号是0是不可能事件;(4) 骰子最大的点数是6,所以掷骰子试验,出现的点数是7是不可能事件;(5)硬币有两面,正面和反面,任意抛掷一枚硬币,“正面向上”是随机事件;(6)在上午八点拨打查号台114,“线路能接通”是随机事件;(7)五边形外角和是,所以度量五边形外角和,结果是度是不可能事件【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、10【分析】设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为求出x的值即可【详解】解:设袋中共有x个球,袋中只装有4个红球,且摸出红球的概率为,解得x=10经检验,x=10是分式方程的解,且符合题意,故答案为:10【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键5、【分析】从1,1,2三个数中任取一个,共有三种取法,其中函数是y随x增大而减小的,函数和都是y随x增大而增大的,所以符合题意的概率为【详解】解:当k0时,一次函数的图象y随x的增大而增大,或所得一次函数中y随x的增大而增大的概率是,故答案为:【点睛】本题考查概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y随x的增大而增大三、解答题1、(1)不能;(2)不会相等,;(3)取出蓝球的概率最大;(4)使各颜色球的数目相等,例如:增加一个红球,减少一个蓝球【分析】(1)根据袋中装有不同颜色的球进行判断;(2)计算出每种颜色的球的概率即可判断;(3)计算出每种颜色的球的概率即可判断;(4)使各种颜色的球数量相同即可【详解】解:(1)袋中装有不同颜色的球,所以不能确定取出球的颜色;(2)不会相等,因为共有2349个球,所以取出红球的概率是,取出绿球的概率是,取出蓝球的概率是;(3)由(2)可知取出蓝球的概率最大;(4)使各颜色球的数目相等即可例如:增加一个红球,减少一个蓝球【点睛】本题主要考查了概率公式的简单应用,关键是掌握随机事件的概率为事件可能出现的结果数÷所有可能出现的结果数2、(1)50;(2)见解析;(3);(4)800名【分析】(1)由乘车的人数除以所占百分比即可;(2)求出骑车的人数,补全条形统计图即可;(3)由概率公式求解即可;(4)由全校共有学生人数乘以步行上学的学生所占的比例即可【详解】解:(1)25÷50%50(名),故答案为:50;(2)骑车的人数为:5025205(名),将条形统计图补充完整如下:(3)选出的恰好是骑车上学的同学的概率是,故答案为:,(4)2000×800(名),即估计步行上学的学生有800名学生【点睛】此题考查了条形统计图和扇形统计图,解题的关键是根据题意分析出题目中的数据3、(1)不能;(2)抽到黑桃的可能性大;(3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】(1)不能 (2)抽到黑桃的可能性大 (3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同【点睛】本题考查了随机事件相关概念,判断事件发生的可能性大小是解题的关键4、(1);(2);(3);(4);(5)1【分析】从13张黑桃牌中任意抽取一张,有13种结果,并且每种结果的可能性都相等(1)根据点数为6的只有1张即可得出结论;(2)根据点数为10的只有1张即可得出结论;(3)根据有人头像的共3张可得出结论;(4)由点数小于5的有4张可得出结论;(5)根据共有13张黑桃可得出结论【详解】解:从13张黑桃牌中任意抽取一张,有13种结果,并且每种结果的可能性都相等(1)P(抽出的牌是黑桃6) (2)P(抽出的牌是黑桃10) (3)P(抽出的牌带有人像) (4)P(抽出的牌上的数小于5) (5)P(抽出的牌的花色是黑桃)1【点睛】本题考查的是概率公式,熟记概率=所求情况数与总情况数之比是解答此题的关键5、【分析】利用树状图展示所有9种等可能的结果数,再找出恰好选中医生甲和护士A的结果数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中恰好选中医生甲和护士A的结果数为1,所以恰好选中医生甲和护士A的概率【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率