2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布定向攻克试卷(含答案解析).docx
-
资源ID:30727878
资源大小:333.96KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布定向攻克试卷(含答案解析).docx
京改版八年级数学下册第十七章方差与频数分布定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、水稻科研人员为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取60株,分别量出每株高度,发现两组秧苗的平均高度和中位数均相同,甲、乙的方差分别是3.6,6.3,则下列说法正确的是( )A甲秧苗出苗更整齐B乙秧苗出苗更整齐C甲、乙出苗一样整齐D无法确定甲、乙出苗谁更整齐2、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A,B,C,D,3、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A0.25B0.3C2D304、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A样本中位数是200元B样本容量是20C该企业员工捐款金额的极差是450元D该企业员工最大捐款金额是500元5、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A0.6B6C0.4D46、已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成( )A11组B9组C8组D10组7、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是()A平均数B中位数C众数D方差8、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A3和2B4和3C5和2D6 和29、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A本次共随机抽取了40名学生;B抽取学生中每天做家务时间的中位数落在4060分钟这一组;C如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D扇形统计图中020分钟这一组的扇形圆心角的度数是30°;10、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( )A4B5C6D7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据a,b,c的方差为4,那么数据3a2,3b2,3c2的方差是_2、一组数据的极差是8,则另一组数据的极差是_3、若整数1至50的方差为,整数51至100的方差为,则与的大小关系是_4、已知一组数据x1,x2,x3,方差是2,那么另一组数据2x14,2x24,2x34的方差是 _5、一组数据0,1,3,2,4的平均数是_,这组数据的方差是_三、解答题(5小题,每小题10分,共计50分)1、第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:(收集数据)从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80(整理、描述数据)按如表分数段整理、描述这两组样本数据:分数(分)40x6060x8080x100甲学校2人12人6人乙学校3人10人7人(说明:成绩中优秀为80x100,良好为60x80,合格为40x60)(分析数据)两组样本数据的平均分、中位数、众数如表所示:学校平均分中位数众数甲学校686060乙学校71.570a(得出结论)(1)(分析数据)中,乙学校的众数a (2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是 校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)2、为了遏制新型冠状病毒疫情的蔓延势头,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图(1)本次调查的人数有多少人?(2)请补全条形图,并求出“在线答疑”在扇形图中的圆心角度数;(3)若全校学生共有2000人,请你估计该校学生对“在线阅读”感兴趣共有多少人?3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250x300;B:200x250;C:150x200;D:100x150),下面给出了部分信息:甲、乙食堂的人数统计表:食堂甲乙平均数211196中位数a215众数b230极差188c甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a ,b ,c ,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、本校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分为了解学生整体体质健康状况,拟抽样进行统计分析(1)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数;本校部分学生体质健康测试成绩统计图(2)本校规定达到3分才算合格. 已知本校共有学生1600人,根据以上数据估计本校学生体质健康测试成绩达到合格的人数;(3)为了更好贯彻落实健康第一的指导思想,请你根据以上数据对本校体育老师提出一条合理的建议5、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:成绩(分)人数(人)6554根据以上信息,解答下列问题:(1)成绩这一段的人数占被抽取总人数的百分比为_;(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数-参考答案-一、单选题1、A【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】解:甲、乙的方差的分别为3.6、6.3,甲的方差小于乙的方差,甲秧苗出苗更整齐故选:A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定2、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案【详解】解:从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,此抽样样本中,样本容量为:100,不合格的频率是:=0.08故选:C【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键3、B【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,选择“5G时代”的频率是:0.3;故选:B【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键4、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为50050=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确故选:A 【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键5、C【分析】先求出反面朝上的频数,然后根据频率=频数÷总数求解即可【详解】解:小明抛一枚硬币100次,其中有60次正面朝上,小明抛一枚硬币100次,其中有40次反面朝上,反面朝上的频率=40÷100=0.4,故选C【点睛】本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数6、A【分析】据组数=(最大值-最小值)÷组距计算即可得解,注意小数部分要进位【详解】解:由组数=(最大值-最小值)÷组距可得:组数=(140-40)÷10+1=11,故选择:A【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可7、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可【详解】A第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意B由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意C由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意D由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意故选:D【点睛】本题考查平均数,中位数,众数,方差的定义掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键8、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解【详解】解:由题意得,解得x=6,这组数据的方差是故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键9、D【分析】由80100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到6080分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:乘以该组人数所占抽查总人数得比例即可判断D选项【详解】解:80100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,抽查总人数为:,A选项正确;6080分钟的人数为:人,先对数据排序后可得:最中间的数在第20,21之间,中位数落在6080分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:人,估算全校人数中每天超过1小时的人数为:人,故C选项正确;020分钟这一组有4人,扇形统计图中这一组的圆心角为:,故D选项错误;故选:D【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键10、C【分析】根据组数=(最大值-最小值)÷组距计算即可【详解】解:在样本数据中最大值与最小值的差为35-15=20,又组距为4,20÷4=5,应该分成5+1=6组故选:C【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数二、填空题1、36【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得【详解】解:数据a,b,c的方差为4,数据3a2,3b2,3c2的方差32×436,故答案为:36【点睛】本题考查了方差的定义当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍2、16【分析】因为x1,x2,x3,xn的极差是8,设xn-x1=8,则2x1+1,2x2+1,2x3+1,2xn+1极差为2(xn-x1)【详解】解:x1,x2,x3,xn的极差是8,不妨设xn-x1=8,2x1+1,2x2+1,2x3+1,2xn+1极差为2(xn-x1)=2×8=16故答案为:16【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值3、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,则故答案为:【点睛】本题考查方差的意义:一般地设个数据,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变4、8【分析】设这组数据,的平均数为,则另一组数据,的平均数为,因为数据,的方差为,所以数据,的方差为,进行计算即可得【详解】解:设这组数据,的平均数为,则另一组数据,的平均数为,数据,的方差为:,数据,的方差为:= = = =8故答案为:8【点睛】本题考查了方差,解题的关键是掌握方差的公式5、2 2 【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得【详解】解:这组数据的平均数,方差,故答案为:2,2【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键三、解答题1、(1)70;(2)甲;(3)140人;(4)乙学校成绩较好,理由见详解【分析】(1)由众数的定义解答即可;(2)可从中位数的角度分析即可;(3)用总人数乘以乙校学生在这次竞赛中的成绩是优秀的人数占被调查人数的比例即可;(4)根据平均分和中位数乙校高于甲校即可判断【详解】解:(1)乙校的20名同学的成绩中70分出现的次数最多,乙学校的众数a70,故答案为:70(2)甲校的中位数为60,小明的同学的成绩高于此学校的中位数,小明是甲校的学生;故答案为:甲(3)400×140(人)估计乙校学生在这次竞赛中的成绩是优秀的人数有140人(4)乙校的平均分高于甲校的平均分,且乙校的中位数70高于甲校的中位数,说明乙校分数不低于70分的人数比甲多,乙校的成绩较好【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键2、(1)100人;(2)图形见解析,72°;(3)500人【分析】(1)根据“在线阅读”的人数和比例即可求解总人数;(2)根据总人数,求出“在线答疑”的人数,然后补全条形统计图;利用“在线答疑”的人数÷总人数×360°即可得到对应圆心角的度数;(3)根据“在线阅读”人数的占比×总人数即可得到结论【详解】解:(1)25÷25%=100(人),本次调查的人数为100人;(2)本次调查的人数为100人,“在线答疑”的人数为:100-25-40-15=20(人),补全条形统计图如图所示:“在线答疑”所占圆心角度数为:;(3)由题意,对“在线阅读”感兴趣的人数占比为:,(人),估计该校学生对“在线阅读”感兴趣共有500人【点睛】本题考查条形统计图与扇形统计图信息综合,通过对条形统计图与扇形统计图信息的分析,准确求出调查的总人数是解题关键3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,a=224,177人的有3天,天数最多,b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,c=290-120=170;20-3-7-4=6,补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键4、(1)平均数是2.75分、中位数是3分,众数是3分;(2)1000人;(3)(加强体育锻炼)答案不唯一【分析】(1)根据平均数,众数及中位数的求法依次计算即可;(2)利用总人数乘以合格人数占抽查总人数的比例即可;(3)抓住健康第一,建议合理即可【详解】解:(1)平均数为:;抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;将这120人的得分从小到大排列处在60,61两个位置的分数都是3分,因此中位数是3分;答:这组数据的平均数是2.75分,中位数是3分,众数是3分;(2)估计本校学生体质健康测试成绩达到合格的人数为:(人),估计本校学生体质健康测试成绩达到合格的人数为1000人;(3)加强体育锻炼(答案不唯一,合理即可)【点睛】题目主要考查从条形统计图获取信息,计算平均数,中位数,众数及利用部分估计整体,熟练掌握各个数据的计算方法是解题关键5、(1);(2)182人.【分析】(1)由题意根据图表得出成绩这一段的人数,进而除以抽取总人数即可得到答案;(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩这一段的人数为:6人,所以成绩这一段的人数占被抽取总人数的百分比为:,故答案为:;(2)根据图表可得成绩不低于70分的学生人数为:(人),所以剪纸比赛成绩不低于70分的学生人数为:(人).答:剪纸比赛成绩不低于70分的学生人数有182人【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键