2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用同步测评练习题(无超纲).docx
-
资源ID:30729294
资源大小:440.70KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用同步测评练习题(无超纲).docx
九年级数学下册第二十五章 概率的求法与应用同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是( ) ABCD2、小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为( )ABCD3、甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制统计图如图所示,符合这一结果的试验可能是( )A抛一枚硬币,出现正面的概率B任意写一个正整数,它能被 3 整除的概率C从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率D掷一枚正方体的骰子,出现 6 点的概率4、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD5、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )ABCD6、某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得一袋苹果;指针落在“一袋橘子”的区域就可以获得一袋橘子若转动转盘2000次,指针落在“一袋橘子”区域的次数有600次,则某位顾客转动转盘一次,获得一袋橘子的概率大约是( )A0.3B0.7C0.4D0.27、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么指针同时落在偶数的概率是( )ABCD8、下列说法正确的有( )等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形无理数在和之间从,这五个数中随机抽取一个数,抽到无理数的概率是一元二次方程有两个不相等的实数根若边形的内角和是外角和的倍,则它是八边形A个B个C个D个9、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是( ).ABCD10、盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是_2、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为_3、如图,在3×3正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使ABC为等腰三角形的概率是_4、有四张正面分别标有数字-4,-3,-2,1,的不透明卡片,它们除数字不同外其他全部相同,现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为,则使得二次函数当时随的增大而减小,且一元二次方程有两个不相等的实数根的概率是_5、只有1和它本身两个因数且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果从3,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是_三、解答题(5小题,每小题10分,共计50分)1、数字“122”是中国道路交通事故报警电话为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字(1)“小冬被抽中”是_事件,“小红被抽中”是_事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是_;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率2、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买(1)甲从中随机选取A套餐的概率是 ;(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率3、国庆期间,某电影院上映了长津湖我和我父辈五个扑水的少年三部电影甲、乙两同学从中选取一部电影观看求甲、乙两同学选取同一部电影的概率4、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子(1)“小明抽到面值为80分的邮票”是_事件(填“随机”“不可能”或“必然”);(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率5、在一个不透明的盒子中有3个红球和1个白球,它们除颜色外其它都一样,从盒子中摸出两个球,求摸出的两个球都是红球的概率-参考答案-一、单选题1、B【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率【详解】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是2÷6故选:B【点睛】本题考查了几何概率用到的知识点为:概率=相应的面积与总面积之比2、D【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,然后根据概率公式求解【详解】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,所以小明抽到红色糖果的概率故选:D【点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了条形统计图3、B【分析】根据统计图可知频率随着次数的增加稳定在左右,进而求得各项的概率即可求解【详解】解:A. 抛一枚硬币,出现正面的概率为B. 任意写一个正整数,它能被 3 整除的概率为C. 从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率为D. 掷一枚正方体的骰子,出现 6 点的概率为根据统计图可知频率随着次数的增加稳定在左右,故选B【点睛】本题考查了根据描述求简单概率,用频率估计概率,分别计算概率并结合统计图求解是解题的关键4、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图5、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图6、A【分析】用频率估计概率即可得到答案【详解】某位顾客转动转盘一次,获得一袋橘子的概率大约是故选:A【点睛】本题考查用频率估计概率,掌握大量的重复试验时频率可视为事件发生概率的估计值7、B【分析】此题可以采用列表法或者树状图法列举出所有情况,看指针同时落在偶数的情况占总情况的多少即可【详解】解:列表得,1245611,11,21,41,51,622,1,2,2,2,42,52,633,13,23,43,53,644,14,24,44,54,655,15,25,45,55,6共有5×5=25种可能,指针同时落在偶数的结果有(2,2)、(2,4)、(2,6)、(4,2)、(4,4)、(4,6)共6种,所以指针同时落在偶数的概率是故选:B【点睛】用到的知识点为:概率=所求情况数与总情况数之比;易错点是得到指针同时落在偶数的情况数8、A【分析】根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案【详解】解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;无理数在和之间,正确,故本选项符合题意;在,这五个数中,无理数有,共个,则抽到无理数的概率是,故本选项错误,不符合题意;因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;正确的有个;故选:【点睛】此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键9、C【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,找出勾股数的情况,因而得出是直角三角形三边长的概率即可【详解】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是故选:C【点睛】本题主要考查了等可能事件的概率,属于基础题,用到的知识点为:概率等于所求情况数与总情况数之比;3,4,5为三角形三边的三角形是直角三角形10、B【分析】利用列表法把所有等可能的情况都列出来,然后分析出两球都是绿球的情况,根据概率公式求解即可【详解】所有等可能的情况如下:红球绿球1绿球2红球(绿球1,红球)(绿球2,红球)绿球1(红球,绿球1)(绿球2,绿球1)绿球2(红球,绿球2)(绿球1,绿球2)一共有6种等可能的情况,其中两球都是绿球的情况有2种,两球都是绿球的概率是故选:B【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比二、填空题1、【分析】直接根据几何概率求解即可【详解】解:图中共有9个小正方形,其中阴影部分共有5个小正方形,从图中随机取一点,这点在阴影部分的概率是,故答案为:【点睛】本题考查几何概率求解,理解并掌握几何概率是解题关键2、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1故所求的概率为P=;故答案为:【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题3、【分析】分三种情况:点A为顶点;点B为顶点;点C为顶点;得到能使ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解【详解】如图,AB,若ABAC,符合要求的有3个点;若ABBC,符合要求的有2个点;若ACBC,不存在这样格点这样的C点有5个能使ABC为等腰三角形的概率是故答案为:【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)4、【分析】根据二次函数的性质将的取值范围求出来,再根据一元二次方程根的判别式求出的取值范围,最后确定的取值个数,从而求出概率【详解】解:二次函数的解析式为:对称轴为:,开口向上当时随的增大而减小满足该条件的为和一元二次方程有两个不相等的实数根同时满足这两个条件的的值为和同时满足这两个条件的的值的概率为:故答案为:【点睛】本题主要考查了二次函数的性质和一元二次方程根的判别式,以及求概率,熟练掌握二次函数的性质和一元二次方程根的判别式是解答本题的关键5、【分析】先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可【详解】解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,抽到个位数字是3的概率是,故答案为:【点睛】本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键三、解答题1、(1)随机;随机;(2)【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可(1)解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件,第一次抽取卡片抽中小会的概率是;(2)解:根据题意可列表如下:(A表示小迎,B表示小冬,C表示小奥,D表示小会)由表可知,共有12种等可能结果,其中小奥被抽中(含有C)的有6种结果,所以小月被选中的概率=【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比2、(1);(2)【分析】(1)直接根据概率公式求解即可;(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解【详解】解:(1)由题意,推出A,B,C,D四种礼盒套餐,甲从中随机选取A套餐的概率是;故答案为:(2)根据题意,画树状图为:共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,甲、乙2人选取相同套餐的概率为:【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率3、【分析】通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可【详解】解:把长津湖我和我父辈五个扑水的少年三部电影分别记为A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,甲、乙两同学选取同一部电影的概率为【点睛】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比4、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等)【分析】(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可【详解】解:(1)三张邮票里面没有80分的邮票“小明抽到面值为80分的邮票”是不可能事件,故答案为:不可能;(2)设A、B、C分别代表120分、150分、50分的邮票,列树状图如下所示:由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种P(两个盒子里邮票的面值恰好相等)【点睛】本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键5、【分析】画树状图,共有12个等可能的结果,再找出符合条件的结果数,然后由概率公式求解即可【详解】解:画树状图为:共有12个等可能的结果,一次摸出的两个球都是红球的情况有6个P(一次摸出的两个球都是红球)【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率