欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年最新沪科版九年级数学下册第24章圆重点解析试卷(含答案详解).docx

    • 资源ID:30729723       资源大小:1.28MB        全文页数:33页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年最新沪科版九年级数学下册第24章圆重点解析试卷(含答案详解).docx

    沪科版九年级数学下册第24章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD2、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD3、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m4、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD5、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )ABCD6、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个7、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的8、下列四个图案中,是中心对称图形但不是轴对称图形的是( )ABCD9、平面直角坐标系中点关于原点对称的点的坐标是( )ABCD10、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是_2、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_3、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_4、如图,在矩形中,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:当时,;点E到边的距离为m;直线一定经过点;的最小值为其中结论正确的是_(填序号即可)5、已知如图,AB=8,AC=4,BAC=60°,BC所在圆的圆心是点O,BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为_三、解答题(5小题,每小题10分,共计50分)1、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30°,PB2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明2、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30°,求CD的长3、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形4、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数量关系,并说明理由5、如图,ABC是O的内接三角形,连接AO并延长交O于点D,过点C作O的切线,与BA的延长线相交于点E(1)求证:ADEC;(2)若AD6,求线段AE的长-参考答案-一、单选题1、D【分析】由平角的性质得出BCD=116°,再由内接四边形对角互补得出A=64°,再由圆周角定理即可求得BOD=2A=128°【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半2、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键4、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键5、C【分析】如图,过点C作CTAB于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论【详解】解:如图,过点C作 CTAB 于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,AO=AK,OH=HK=3,OA=OK,OA=OK=AK,OAK=AOK=60°,AH=OA×sin60°=6×=3,OHAB,AH=BH,AB=2AH=6,OC+OHCT,CT6+3=9,CT的最大值为9,ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型6、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心7、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键8、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键10、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90°,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=BAC=90°,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30°,根据圆周角定理得出AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30°根据圆周角定理得出AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90°,AD=AE=,DAB+BAE=90°,BAE+EAC=90°,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90°,CP为A的切线,AECP,DPE=PEA=DAE=90°,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30°,AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30°,AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60°+60°=120°,L故点P运动的路径长为正确;正确的是故选B【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键二、填空题1、【分析】根据圆心角为的扇形面积是进行解答即可得【详解】解:这个扇形的面积故答案是:【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式2、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹3、【分析】由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为【详解】是一个圆锥在某平面上的正投影为等腰三角形ADBC在中有即由圆锥侧面积公式有故答案为:。【点睛】本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为4、【分析】当在点的右边时,得出即可判断;证明出即可判断;根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;当时,有最小值,计算即可【详解】解:,为等腰直角三角形,当在点的左边时,当在点的右边时,故错误;过点作,在和中,根据旋转的性质得:,故正确;由中得知为等腰直角三角形,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,即直线一定经过点,故正确;是等腰直角三角形,当时,有最小值,为等腰直角三角形,由勾股定理:,故正确;故答案是:【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理5、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60°,MAN=120°,MN=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60°,JAC是等边三角形,JC=JA=JB,ACB=90°,BC=,BOC=60°,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60°,ACH=30°,AHOH,AH=AC=2,CH=AH=2,OH=6,OA=4,当点P在直线OA上时,PA的值最小,最小值为-,MN的最小值为(-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题三、解答题1、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析【分析】(1)根据PBD等腰直角三角形,PB2,求出DB的长,由O是PBD的外接圆,DBE30°,可得答案;(2)根据同弧所对的圆周角,可得ADP=FBP,由PBD等腰直角三角形,得DPB=APD=90°,DP=BP,可证APDFPB,可得答案【详解】解:(1)由题意画以下图,连接EP,PBD等腰直角三角形,O是PBD的外接圆,DPB=DEB=90°,PB2, ,DBE30°, (2)点P在点A、B之间,由(1)的图根据同弧所对的圆周角相等,可得:ADP=FBP,又PBD等腰直角三角形,DPB=APD=90°,DP=BP,在APD和FPB中APDFPBAP=FP,AP+PB=ABFP+PB=AB,FP=AB-PB,点P在点B的右侧,如下图:PBD等腰直角三角形,DPB=APF=90°,DP=BP,PBF+EBP=180°,PDA+EBP=180°,PBF=PDA,在APD和FPB中APDFPBAP=FP,AB+PB=AP,AB+PB=PF,PF= AB+PB综上所述,FP=AB-PB或PF= AB+PB【点睛】本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况2、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90°,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180°DAB+DAM=90°即BAM=90°,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30°在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键3、(1)见解析;(2)BC,90°,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90°即可【详解】(1)作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC=BCAB是直径,ACB=90°(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90°,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键4、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得ABM=EBN,BM=BN,AB=BE,根据全等三角形的判定证明ABMEBN即可得出结论【详解】解:AM=EN,理由为:ABE是等边三角形,AB=BE,ABE=60°,即EBN=ABN=60°,线段BM绕点B逆时针旋转60°得到BN,BM=BN,MBN=60°,即ABM+ABN=60°,ABM=EBN,在ABM和EBN中,ABMEBN(SAS),AM=EN【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键5、(1)见解析;(2)6【分析】(1)连接OC,根据CE是O的切线,可得OCE,根据圆周角定理,可得AOC=,从而得到AOC+OCE,即可求证;(2)过点A作AFEC交EC于点F,由AOC,OAOC,可得OAC,从而得到BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解【详解】证明:(1)连接OC,CE是O的切线,OCE,ABC,AOC2ABC,AOC+OCE,ADEC;(2)解:过点A作AFEC交EC于点F,AOC,OAOC,OAC,BAC,BAD,ADEC,OCE,AOC,AFC=90°,四边形OAFC是矩形,OAOC,四边形OAFC是正方形,在RtAFE中,AE=2AF=6【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键

    注意事项

    本文(2021-2022学年最新沪科版九年级数学下册第24章圆重点解析试卷(含答案详解).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开