2021-2022学年浙教版初中数学七年级下册第五章分式课时练习试题(含详细解析).docx
-
资源ID:30730251
资源大小:254.59KB
全文页数:14页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第五章分式课时练习试题(含详细解析).docx
初中数学七年级下册第五章分式课时练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、新冠病毒由蛋白质外壳和单链核酸组成,直径大约在60140纳米(1纳米0.0000001厘米)某冠状病毒的直径约0.0000135厘米数据“0.0000135”用科学记数法表示为()A1.35×106B13.5×106C1.35×105D0.135×1042、代数式的家中来了几位客人:、,其中属于分式家族成员的有( )A1个B2个C3个D4个3、计算: ( )A3B3CD4、已知,则的值为( )ABCD5、若,则的值为( )A0B1C2D36、1纳米0.000000001米,则25纳米应表示为()A2.5×107B2.5×108C2.5×109D2.5×10107、若 ,则 ( )ABCD8、已知:1纳米1.0×109米,若用科学记数法表示125纳米,则正确的结果是( )A1.25×109米B1.25×108米C1.25×107米D125×106米9、有一种花粉的直径是0.000064米,将0.000064用科学记数法表示应为( )ABCD10、年月日时分,我国成功发射了北斗系统第颗导航星,其授时精度为世界之最,不超过秒数据用科学记数法表示为()ABCD二、填空题(5小题,每小题4分,共计20分)1、某种生物细胞的直径约为0.000000076米,用科学记数法表示为 _米2、已知,则_3、若分式的值大于零,则x的取值范围是 _4、计算:_5、若,则_三、解答题(5小题,每小题10分,共计50分)1、将下列代数式按尽可能多的方法分类(至少写三种):2、阅读下列材料,解决问题:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算时往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明将分式拆分成一个整式与一个分式(分子为整数)的和的形式解:这样,分式就拆分成一个整式x2与一个分式的和的形式(1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为 (2)已知整数x使分式的值为整数,则满足条件的整数x 3、计算:(2x2y)2 3xy 2÷ 2xy4、计算:(1)(2)5、(1)计算(2)先化简,再求值:,其中,-参考答案-一、单选题1、C【分析】用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键2、C【分析】根据分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,其中A称为分子,B称为分母,据此判断即可【详解】解:属于分式的有:、,故选:C【点睛】本题考查了分式的定义,熟知定义是解本题的关键3、C【分析】利用负整数指数幂:(a0,p为正整数),进而得出答案【详解】解:;故选:C【点睛】此题主要考查了负整数指数幂,正确掌握负整数指数幂的性质是解题关键4、C【分析】根据可得,将代入化简可得结果【详解】解:,将代入中得:,故选:C【点睛】本题考查了分式的化简求值,将代入中约分化简是解题的关键5、A【分析】由题意可得:,通过整理得:,则可求得【详解】解:,故选:【点睛】本题主要考查了零指数幂法则,解答的关键是明确非0实数的0次方等于16、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:1纳米0.000000001米,25纳米应表示为:25×0.0000000012.5×108(m),故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值【详解】解:,或(舍去),故选:B【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键8、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:125纳米=1.25×107米,故选:C【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,等于原数左数第一个非零数字前0的个数,按此方法即可正确求解9、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000646.4×105故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、7.6×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000000076米7.6×108米,故答案为:7.6×108【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、51【分析】直接利用完全平方公式计算得出答案【详解】解:,即-249,则51,故答案为:51【点睛】本题主要考查了分式的化简求值以及完全平方公式,正确运用公式是解题关键3、且【分析】由已知可得分子x+20,再由分式的分母不等于零,得到x10,进而求出x的取值【详解】解:分式的值大于零,x+20,x2,x10,x1,故答案为x2且x1【点睛】本题考查分式的值;熟练掌握分式求值的特点,特别注意分式的分母不等于零这个隐含条件是解题的关键4、10【分析】先算零指数幂和负整数指数幂,再算加法,即可求解【详解】原式=,故答案是:10【点睛】本题主要考查实数的运算,掌握零指数幂和负整数指数幂的性质,是解题的关键5、0,6,8,【分析】根据非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,可得答案【详解】解:m0时,(7)01,m71时,m8,(m7)81,m71时(m7)61,故答案为:0,6,8【点睛】本题考查了零次幂,非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,以防遗漏三、解答题1、见详解【分析】根据整式和分式分类,单项式,多项式,分式分类,单项式二项式,四项式,分式分类,即可【详解】解:整式:分式:;单项式:多项式:分式:;单项式:二项式:四项式:分式:【点睛】本题主要考查整式,单项式,多项式的概念,熟练掌握整式,单项式、多项式的定义是解题的关键2、(1);(2)2或4或-10或16【分析】(1)按照定义拆分即可,(2)先将拆分为一个整式与一个分式的和的形式,若要值为整数,只需为整数即可,故x=2或4或-10或16【详解】(1)(2)若要值为整数,只需为整数即可当x=2时当x=4时当x=-10时当x=16时故x=2或4或-10或16【点睛】本题考查了分式的化简构造新形式以及求使分式值为整数的未知数,理解逆用分数加减法的化简方法是解题的关键3、【分析】根据运算顺序,先算乘方,再算乘除即可得答案【详解】原式=,.【点睛】本题考查的是整式的乘除运算、指数幂,掌握整式的乘除运算法则和指数幂是解题关键.4、(1);(2)【分析】(1)直接利用度分秒换算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则计算得出答案【详解】解:(1)原式(2)原式【点睛】此题主要考查了同底数幂的乘除运算、度分秒换算,正确掌握相关运算法则是解题关键5、(1)-11,(2)4a2-4ab+2b2,【分析】(1)按照实数计算方法和计算法则计算即可 (2)先化简,再代入数值求解【详解】解:(1)原式;(2)原式,当得:原式=【点睛】本题考查实数的混合运算和代数式的混合运算,掌握对应的方法和运算法则是本题解题关键