2021-2022学年基础强化北师大版八年级数学下册第四章因式分解定向练习试卷(含答案详解).docx
-
资源ID:30730827
资源大小:223.53KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化北师大版八年级数学下册第四章因式分解定向练习试卷(含答案详解).docx
北师大版八年级数学下册第四章因式分解定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形中,是因式分解的为()Ax(ab)axbxBx23x+1x(x3)+1Cx24(x+2)(x2)Dm+1x(1+)2、三角形的三边长分别为a、b、c,如果a、b、c满足,则这个三角形是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形3、下列由左到右的变形,属于因式分解的是( )ABCD4、若能分解成两个因式的积,则整数a的取值可能有( )A4个B6个C8个D无数个5、把分解因式的结果是( )ABCD6、下列从左边到右边的变形中,是因式分解的是( )ABCD7、下列各式中,能用完全平方公式分解因式的是()ABCD 8、下列各因式分解正确的是( )ABCD9、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y10、已知a2(b+c)b2(a+c)2021,且a、b、c互不相等,则c2(a+b)2020()A0B1C2020D2021第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、把多项式2a32a分解因式的结果是_3、观察下列因式分解中的规律:;利用上述系数特点分解因式_4、在实数范围内分解因式:x23xyy2_5、(_)(_);(_)(_);(_)(_);(_)(_);(_)(_);(_)(_)三、解答题(5小题,每小题10分,共计50分)1、分解因式(1); (2)2、因式分解(1)(2)3、观察下列因式分解的过程:根据上述因式分解的方法,尝试将下列各式进行因式分解:(1);(2)4、(1)20032-1999×2001(公式法) (2)16(a-b)2-9(a+b)2 (分解因式)5、分解因式(1)(2)-参考答案-一、单选题1、C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键2、A【分析】将等式因式分解为的形式,然后求得b=c,从而判断三角形的形状【详解】解:,这个三角形是等边三角形故选A【点睛】此题考查了因式分解的应用注意掌握因式分解的步骤,分解要彻底3、A【分析】直接利用因式分解的定义分别分析得出答案【详解】解:、,是因式分解,符合题意、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式4、B【分析】把18分解为两个整数的积的形式,a等于这两个整数的和【详解】解:18=1×18=2×9=3×6=(-1)×(-18)=(-2)×(-9)=(-3)×(-6),所以a=1+18=19或2+9=11或3+6=9或(-1)+(-18)=-19或(-2)+(-9)=-11或(-3)+(=6)=-9整数a的值是±9或±11或±19,共有6个故选:B【点睛】本题考查了十字相乘法分解因式,对常数项的不同分解是解题的关键5、B【分析】先用平方差公式分解因式,在提取公因式即可得出结果【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键6、A【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解7、D【分析】根据完全平方公式法分解因式,即可求解【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键8、D【分析】利用提公因式法、公式法逐项进行因式分解即可【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键9、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键10、B【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案【详解】解:a2(b+c)b2(a+c)a2b+a2cab2b2c0ab(ab)+c(a+b)(ab)0(ab)(ab+ac+bc)0aba2(b+c)2021a(ab+ac)2021a(bc)2021abc2021abc2021原式c(ac+bc)2020c(ab)2020abc2020202120201故选:B【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键二、填空题1、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可【详解】故填“2022”【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键2、【分析】直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可【详解】解:2a32a= =;故答案为2a(a+1)(a-1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键3、【分析】利用十字相乘法分解因式即可【详解】解:,故答案为:【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:4、【分析】先利用配方法,再利用平方差公式即可得【详解】解:=故答案为:【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等5、;【分析】利用十字相乘法进行因式分解即可得【详解】解:;故答案为:;【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键二次三项式,若存在 ,则三、解答题1、(1);(2).【分析】(1)先提取公因式 再利用完全平方公式进行分解即可;(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.【详解】(1)解:原式= = (2)解:原式= = =【点睛】本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个因式都不能再分解为止.2、(1);(2)【分析】(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.【详解】解:(1)原式(2)原式【点睛】本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.3、(1);(2)【分析】(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;(2)根据题中的方法分解因式即可【详解】解:(1);(2)【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解4、(1)12010;(2)(7a-b)(a-7b)【分析】(1)运用完全平方公式和平方差公式进行计算即可;(2)直接运用平方差公式进行计算即可【详解】解:(1)20032-1999×2001=(2000+3)2-(2000-1)(2000+1) =20002+2×2000×3+9-(20002-12) =20002+2×2000×3+9-20002+12 =12010 (2)16(a-b)2-9(a+b)2= = = =【点睛】本题主要考查了分解因式,熟练掌握因式分解的方法是解答本题的关键5、(1)3x(1+2x)(1-2x);(2)(5a+b)(a+5b)【分析】(1)先提取公因式3x,再根据平方差公式进行二次分解即可求得答案;(2)根据完全平方公式进行分解即可【详解】(1)3x12x3=3x(14x2)=3x(12x)(1+2x)(2)9(a+b)24(ab)2=3(a+b2-2(a-b)2=3(a+b)+2(a-b)3(a+b)-2(a-b)=(3a+3b+2a-2b)(3a+3b-2a+2b)=(5a+b)(a+5b)【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则