[中考专题]2022年中考数学三年高频真题汇总-卷(Ⅱ)(含答案详解).docx
-
资源ID:30731075
资源大小:542.29KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
[中考专题]2022年中考数学三年高频真题汇总-卷(Ⅱ)(含答案详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年中考数学三年高频真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解一元二次方程x234x,下列配方正确的是( )A(x2)22B(x2)27C(x2)21D(x2)212、已知关于的分式方程无解,则的值为( )A0B0或8C8D0或8或43、下列方程中,关于x的一元二次方程的是( )Ax212xBx32x20CDx2y104、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )A10B12C15D185、已知,则代数式的值是( )A3B3C9D186、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )ABCD7、一组样本数据为1、2、3、3、6,下列说法错误的是( )A平均数是3B中位数是3C方差是3D众数是38、正八边形每个内角度数为( )A120°B135°C150°D160°9、下列各点在反比例的图象上的是( )A(2,3)B(2,3)C(3,2)D(3,2)10、若,则的值是( )AB0C1D2022第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将0.094932用四舍五入法取近似值精确到百分位,其结果是_2、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为_· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·3、在实数,2.131131113,0,中,无理数是_(填序号)4、若则_5、近似数0.0320有_个有效数字三、解答题(5小题,每小题10分,共计50分)1、在中,点E在射线CB上运动连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF(1)如图1,点E在点B的左侧运动当,时,则_°;猜想线段CA,CF与CE之间的数量关系为_(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系2、永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%(1)甲、乙两种体育器材进价分别为多少元/件?(列方程或方程组解答)(2)该超市决定购进甲、乙体育器材100件,并且考虑市场需求和资金周转,用于购进这些体育器材的资金不少于6300元,同时又不能超过6430元,则该超市有哪几种进货方案?那种方案获利最大?最大利润是多少元?3、解分式方程:(1)(2)4、(1)先化简再求值:,其中(2)解方程:5、计算:-参考答案-一、单选题1、D【分析】根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案【详解】,整理得:,配方得:,即故选:D【点睛】本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2、D【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解【详解】,当m+4=0时,方程无解,故m= -4;当m+40,x=2时,方程无解,故m=0;当m+40,x= -2时,方程无解,故m=-8;m的值为0或8或4,故选D【点睛】本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键3、A【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断【详解】解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;C、为分式方程,不符合题意;D、含有两个未知数,不是一元二次方程,不符合题意故选:A【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为04、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可【详解】解:由题意可得,解得,a=15经检验,a=15是原方程的解故选:C【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题利用了用大量试验得到的频率可以估计事件的概率关键是根据白球的频率得到相应的等量关系5、C【分析】由已知得到,再将变形,整体代入计算可得【详解】解:,=9故选:C【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用6、B【分析】根据等量关系:原价×(1x)2=现价列方程即可【详解】解:根据题意,得:,故答案为:B【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键7、C【分析】根据平均数、中位数、众数和方差的定义逐一求解可得【详解】A、平均数为,故此选项不符合题意;B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;C、方差为,故此选项符合题意;D、众数为3,故此选项不符合题意故选:C【点睛】本题考查了众数、平均数、中位数、方差平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量8、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数【详解】解:正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:内角为故选B· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键9、C【分析】根据反比例函数图象上点的坐标特征对各选项进行判断【详解】解:2×(3)6,2×36,3×(2)6, 而3×26,点(2,3),(2,3)(3,2),不在反比例函数图象上,点(3,2)在反比例函数图象上故选:C【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xyk10、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可【详解】解:,a-2=0,b+1=0,a=2,b=-1,=,故选C【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键二、填空题1、0.09【分析】把千分位上的数字4进行四舍五入即可【详解】解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09故答案为:0.09【点睛】本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法2、【分析】如图,取的中点,连接,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值【详解】解:如图,取的中点,连接,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·将线段MN绕点M顺时针旋转60°得到线段MQ,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·直平分线的性质与判定,根据以上知识转化线段是解题的关键3、【分析】根据无理数是无限不循环小数进行判断即可【详解】解:是分数,属于有理数;是无理数;2.131131113是有限小数,属于有理数;是无理数;0是整数,属于有理数;2是有理数;故答案为:【点睛】本题考查了有理数与无理数的定义与分类解题的关键在于正确理解有理数与无理数的定义与分类4、【分析】用含b的式子表示a,再把合分比式中a换成含b的式子约分即可【详解】解:,故答案为【点睛】本题考查合分比性质问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题5、3【分析】从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字,进而得到答案【详解】解:近似数0.0320有3、2、0等3个有效数字故答案为:3【点睛】本题考查了近似数的有效数字解题的关键在于明确:从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字三、解答题1、(1);(2)不成立,【分析】(1)由直角三角形的性质可得出答案;过点E作MEEC交CA的延长线于M,由旋转的性质得出AE=EF,AEF=90°,得出AEM=CEF,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·证明FECAEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;(2)过点F作FHBC交BC的延长线于点H证明ABEEHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;(1),sinEAB=,故答案为:30°;如图1,过点E作交CA的延长线于M,将线段AE绕点E顺时针旋转90°得到EF,在FEC和AEM中,为等腰直角三角形,;故答案为:;(2)不成立如图2,过点F作交BC的延长线于点H,在FEC和AEM中· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,为等腰直角三角形,又,即【点睛】本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键2、(1)甲、乙两种体育器材进价分别为80元/件,40元/件(2)见解析【分析】(1)设甲器材的进价为x元/件,乙器材的进价为y元/件,得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲器材z件,根据题意列出不等式组,求出整数解,得到三种方案,分别计算三种方案的利润,比较即可(1)解:设甲器材的进价为x元/件,乙器材的进价为y元/件,由题意可得:,解得:,甲、乙两种体育器材进价分别为80元/件,40元/件;(2)设购进甲器材z件,由题意可得:,解得:,z的取值为58,59,60,方案一:当z=58时,即甲器材58件,乙器材42件,利润为:元;方案二:当z=59时,即甲器材59件,乙器材41件,利润为:元;方案三:当z=60时,即甲器材60件,乙器材40件,利润为:元;方案三的利润最大,最大利润为2280元【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组,由两种商品利润间的关系,找出获利最大的进货方案3、(1)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)【分析】先将分式方程化为整式方程,解出整式方程,再检验,即可求解(1)解:去分母:解得:,检验:当时,故原方程的解为;(2)解:去分母:解得:,检验:当时, , 故原方程的解为【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤是解题的关键4、(1),;(2)无解【分析】(1)根据分式的各运算法则进行化简,再代入计算即可;(2)根据分式方程的解法进行求解即可【详解】解:(1),当时,原式;(2),方程两边都乘,得,解得:,检验:当时,所以是原方程的增根,即原方程无解【点睛】本题考查了分式的化简求值,解分式方程,熟练掌握各运算法则是解题的关键5、【分析】根据二次根式的乘法,以及二次根式的性质,分母有理化进行计算即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键