2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程定向训练练习题(无超纲).docx
-
资源ID:30731955
资源大小:218.39KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程定向训练练习题(无超纲).docx
北师大版八年级数学下册第五章分式与分式方程定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果分式的值等于0,那么x的值是()ABCD2、分式可变形为( )ABCD3、分式方程的解是( )ABCD4、若关于的一元一次不等式组的解集为,且关于的分式方程的解为负整数,则所有满足条件的整数的值之和是( )ABCD5、如果把分式中的和都扩大为原来的2倍,那么分式的值( )A扩大为原来的4倍B扩大为原来的2倍C不变D缩小为原来的2倍6、下列是最简分式的是( )ABCD7、下列分式中,是最简分式的是( )ABCD8、下列各分式中,当x1时,分式有意义的是()ABCD9、如果把分式中的x和y都扩大3倍,那么分式的值( )A扩大3倍B缩小3倍C缩小6倍D不变10、八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达已知汽车的速度是自行车速度的2倍,设汽车到博物馆所需的时间为xh,则下列方程正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式的值为零,则x的值为 _2、若是关于的方程的解,则的值为_3、甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件,若甲第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,则甲两次购买这种商品的平均单价是 _元/件,乙第一次购买这种商品的单价是 _元/件4、当时,分式的值为_5、当x_时,分式有意义三、解答题(5小题,每小题10分,共计50分)1、解分式方程:2、解方程:(1);(2)3、2021年3月5日,十三届全国人大四次会议制定了2030年前碳排放达峰行动方案为发展低碳经济、减少碳排放,于今年10月1日起上调了企业用电价格,调整后电价是调整前的1.5倍已知某企业今年10月份比今年6月份少用电2000度,6月份的电费是4000元,10月份的电费是3600元求:调整后每度电的价格4、(1)计算:(x+y)2(xy)2÷(2xy)(2)化简求值:,其中x选取2,0,1,4中的一个合适的数5、化简:-参考答案-一、单选题1、B【分析】根据分式的值为0的条件可得,即可求得答案【详解】解:分式的值等于0,故选B【点睛】本题考查了分式的值为0的条件,解题的关键是理解分式的值为0的条件是分子为0,分母不为02、C【分析】根据分式的基本性质进行分析判断【详解】解:,故C的变形符合题意,A、B和D的变形不符合题意,故答案为:C【点睛】本题考查分式的基本性质,理解分式的基本性质(分式的分子,分母同时乘以或除以同一个不为零的数或式子,分式仍然成立)是解题关键3、D【分析】两边都乘以2(3x-1),化为整式方程求解,然后检验即可【详解】解:,两边都乘以2(3x-1),得3(3x-1)-2=7,9x-3-2=7,9x=12,检验:当时,2(3x-1) 0,是原分式方程的解,故选D【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验4、B【分析】化简一元一次不等式组,根据解集为-2得到a的取值范围;解分式方程,根据解是负整数解,且不是增根,得到a的最终范围,这个范围内能使y是整数的a确定出来求和即可【详解】解:一元一次不等式组整理得到:,不等式组的解集为x-2,-2,a-8; 分式方程两边都乘以(y+1)得:2y=a-(y+1),整理得3y=a-1,y=y有负整数解,且y+10,<0,且-1,解得:a<1,且a-2能使y有负整数解的a为:-8,-5,和为-13故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算考虑解分式方程可能产生增根是解题的关键5、B【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:分别用2x和2y去代换原分式中的x和y,得,可见新分式扩大为原来的2倍故选B【点睛】本题主要考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论6、C【详解】解:A、,不是最简分式,此项不符题意;B、,不是最简分式,此项不符题意;C、是最简分式,此项符合题意;D、,不是最简分式,此项不符题意;故选:C【点睛】本题考查了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键7、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可【详解】解:A、的分子与分母含公因式(x+1),不属于最简分式,不符合题意; B、的分子与分母不含公因式,属于最简分式,符合题意;C、的分子与分母含公因式a,不属于最简分式,不符合题意;D、的分子与分母含公因式(ab),不属于最简分式,不符合题意;故选:B【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键8、A【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可【详解】解:A、当x1时,分母2x+110,所以分式有意义;故本选项符合题意;B、当x1时,分母x+10,所以分式无意义;故本选项不符合题意;C、当x1时,分母x210,所以分式无意义;故本选项不符合题意;D、当x1时,分母x2+x0,所以分式无意义;故本选项不符合题意;故选A【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键9、A【分析】将x,y用3x,3y代入化简,与原式比较即可【详解】解:将x,y用3x,3y代入得,故值扩大到3倍故选A【点睛】本题考查分式的基本性质,熟悉掌握是解题关键10、C【分析】设汽车到博物馆所需的时间为xh,根据时间路程÷速度,汽车的速度是自行车速度的2倍,即可得出关于x的分式方程,此题得解【详解】解:设汽车到博物馆所需的时间为xh,根据题意列方程得,;故选:C【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键二、填空题1、1【分析】由题意直接根据分式的值为零时分子等于零,分母不等于零进行分析计算即可【详解】解:因为分式的值为零,所以,解得:.故答案为:1.【点睛】本题考查分式的值为零的条件注意掌握若分式的值为零,需同时具备两个条件分子为0,分母不为02、【分析】把代入方程,得到关于的一元一次方程,再解方程即可.【详解】解: 是关于的方程的解, 解得: 故答案为:【点睛】本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.3、48 60 【分析】设甲第一次购买这种商品的价格为x元,然后根据甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件列出方程求出甲第一次购买这种商品的价格60元/件,即可得到乙第一次购买商品的价格和甲第一次购买商品的数量以及甲第二次购买商品的价格和数量,由此即可得到答案【详解】解:设甲第一次购买这种商品的价格为x元,由题意得:,解得,经检验是原方程的解,甲第一次购买这种商品的价格60元/件,乙第一次购买这种商品的单价是60元/件,甲第一次购买商品的数量为件,甲第二次再去采购该商品时,单价比上次少了20元/件,甲第二次再去采购该商品时的价格为60-20=40元/件,甲第二次购买的商品数量为件,甲两次购买这种商品的平均单价是元/件,故答案为:48;60【点睛】本题主要考查了分式方程的应用,解题的关键在于能够根据题意列出方程求解4、2025【分析】把分式化简为,然后把b的值代入计算即可【详解】解:,当时,原式2021+42025故答案为:2025【点睛】本题考查了分式的化简求值,熟练掌握利用平方差公式对分式进行化简是解题的关键5、5【分析】根据分式有意义的条件即可求出答案【详解】解:由分式有意义的条件可知:x-50,x5,故答案为:5【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是:分母不为0是解题的关键三、解答题1、x3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:,两边都乘以(x+1)(x1),去分母得:2(x1)x+1,解得:x3,检验:当x3时,(x+1)(x1) 0,x3是分式方程的解【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验2、(1)x;(2)x9【分析】(1)(2)先去分母,把分式方程转化为整式方程,然后再求解,注意要检验【详解】解:(1)两边同乘x(x1)得:3xx+30x检验:当x-时,x(x1)0原方程得解为:x(2)两边同乘(x1)(x+1)得:3(x1)2(x+1)4,3x32x24,x9检验:当x9时,(x1)(x+1)800原方程的解为:x9【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键3、调整后每度电的价格是1.2元【分析】设调整前每度电的价格是元,从而可得调整后每度电的价格是元,再根据“某企业今年10月份比今年6月份少用电2000度,6月份的电费是4000元,10月份的电费是3600元”建立方程,解分式方程即可得【详解】解:设调整前每度电的价格是元,则调整后每度电的价格是元,由题意得:,解得,经检验,是原方程的解,且符合题意,当时,答:调整后每度电的价格是1.2元【点睛】本题考查了分式方程的应用,正确建立方程是解题关键需注意的是,解分式方程需要进行检验4、(1)2;(2),当x1时,原式4【分析】(1)首先利用完全平方公式和平方差公式化简,然后括号里面合并同类项,最后根据单项式除以单项式运算法则求解即可;(2)首先对分子分母因式分解和括号里面式子通分,然后根据分式的混合运算法则化简,最后代入求解即可【详解】(1)(x+y)2(xy)2÷(2xy)(x2+2xy+y2x2+2xyy2)÷2xy4xy÷2xy2;(2)解:原式÷()+1+1+要使分式有意义,当x1时,原式4【点睛】此题考查了整式的混合运算,分式的化简求值问题,解题的关键是熟练掌握整式的混合运算和分式的混合运算法则5、-2【分析】根据分式的乘除运算法则计算即可【详解】解:原式【点睛】本题考查分式的乘除运算,熟练掌握该知识点是解题关键