2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形单元测试试题(含详细解析).docx
-
资源ID:30731987
资源大小:906.64KB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形单元测试试题(含详细解析).docx
北师大版八年级数学下册第六章平行四边形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、七边形的内角和为( )A720°B900°C1080°D1440°2、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )AB C D3、如图所示,四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,E、F分别是PA、PQ两边的中点;当点P在BC边上移动的过程中,线段EF的长度将( )A先变大,后变小B保持不变C先变小,后变大D无法确定4、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对5、如图,已知四边形ABCD和四边形BCEF均为平行四边形,D60°,连接AF,并延长交BE于点P,若APBE,AB3,BC2,AF1,则BE的长为()A5B2C2D36、若一个正多边形每个外角都是36°,则这个正多边形的边数为()A8B9C10D117、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D48、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220°B180°C270°D240°9、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形10、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为( )A4B6C8D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图中x的值为 _2、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm3、一个正多边形的每个外角都是45°,则这个正多边形是正_边形4、如图,是第四套人民币1角硬币,该硬币边缘镌刻的正多边形的外角的度数为_°5、一个多边形的内角和比它的外角和的2倍还多180°,则它是_边形三、解答题(5小题,每小题10分,共计50分)1、已知一个多边形的内角和是外角和的4倍,求这个多边形的边数2、已知,在中,点D为BC的中点(1)观察猜想如图,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是_;线段DE与DF的位置关系是_(2)类比探究如图,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图,若点E、F分别为AB、CA延长线的点,且,请直接写出的面积3、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF4、求图(1)(2)中x的值5、如图在平面直角坐标系中,点A(-2,0),B(2,3),C(0,4)(1)判断ABC的形状,并说明理由;(2)点D为平面直角坐标系中的点,以A、B、C、D为顶点的四边形为平行四边形,写出所有满足条件的点D的坐标-参考答案-一、单选题1、B【分析】根据多边形内角和公式即可求解【详解】解:七边形的内角和为:(7-2)×180°=900°,故选:B【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键2、B【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90°,AEC=ECD=90°, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=90°x,EFC=180°2x,EFD=90°x+180°2x=270°3x,AEF=90°x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点3、B【分析】连接,根据题意可得为的中位线,可知,由此可知不变【详解】如图,连接AQ,分别为、的中点,为的中位线,为定点,的长不变,的长不变,故选:【点睛】本题主要考查三角形中位线定理,掌握三角形中位线平行于第三边且等于第三边的一半是解题的关键4、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质5、D【分析】过点D作DHBC,交BC的延长线于点H,连接BD,DE,先证DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果【详解】过点D作DHBC,交BC的延长线于点H,连接BD,DE,四边形ABCD是平行四边形,AB=3,ADC=60º,CD=AB=3,DCH=ABC=ADC=60º,DHBC, DHC=90º,ADC+CDH=90°,CDH=30°,在RtDCH中,CH=CD=,DH=,四边形BCEF是平行四边形,AD=BC=EF,ADEF,四边形ADEF是平行四边形,AFDE,AF=DE=1,AFBE,DEBE, ,故选D【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题6、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360°,那么边数n=360°÷一个外角的度数【详解】解:这个正多边形的边数为n,正n边形每个外角都是36°,n=360°÷36°=10故选C【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键7、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90°,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH=DHC=60°,在ABCD中,BAD=C=60°,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30°,AHD=90°,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法8、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键9、B【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)×180°360°,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键10、C【分析】先证明AEEC,再求解AD+DC8,再利用三角形的周长公式进行计算即可.【详解】解:平行四边形ABCD,ADBC,ABCD,OAOC,EOAC,AEEC,AB+BC+CD+AD16,AD+DC8,DCE的周长是:CD+DE+CEAE+DE+CDAD+CD8,故选:C【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AEEC是解本题关键.二、填空题1、130【分析】由题意直接根据五边形的内角和是540°列出方程,解方程即可【详解】解:因为五边形的内角和是:(52)×180°540°,所以x+x+80+90+(x20)540,解得x130,故答案为:130【点睛】本题考查多边形的内角和定理,注意掌握多边形的内角和定理(n2)×180°(n为边数)是解题的关键.2、24【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半3、八【分析】根据多边形的外角和等于即可得【详解】解:因为多边形的外角和等于,所以这个正多边形的边数是,即这个正多边形是正八边形,故答案为:八【点睛】本题考查了多边形的外角和,熟记多边形的外角和等于是解题关键4、40°【分析】先判断是正多边形的边数,再根据正多边形的性质外角都相等,利用外角和÷边数求解即可【详解】解:硬币边缘镌刻的正多边形是正九边形,外角和360°,该硬币边缘镌刻的正多边形的外角的度数为360°÷9=40°,故答案为:40【点睛】本题考查正多边形的外角,掌握正多边形的识别,多边形外角和,正多边形外角性质是解题关键5、七【分析】根据多边形的内角和公式(n-2)180°与多边形的外角和定理列式进行计算即可求解【详解】解:设多边形的边数为n,则(n-2)180°-2×360°=180°,解得n=7故答案为:七【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键三、解答题1、这个多边形的边数是10【分析】多边形的外角和是360°,内角和是它的外角和的4倍,则内角和为4×360=1440度n边形的内角和可以表示成(n-2)180°,设这个多边形的边数是n,即可得到方程,从而求出边数【详解】解:设这个多边形的边数为n,由题意得:(n2)×180°4×360°,解得n10,故这个多边形的边数是10【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)180°,外角和为360°2、(1),;(2)成立,证明见解析;(3)【分析】(1)由点E、F、D分别是AB、AC、BC的中点,可得,再由,得,由此即可得到答案;(2)连接,只需要证明,得到,即可得到结论;(3)连接AD,证明BDEADF得到,则,由此求解即可【详解】解:(1)点E、F、D分别是AB、AC、BC的中点,即,故答案为:,;(2)结论成立:,证明:如图所示,连接,D为BC的中点,且AD平分,在和中,即,即;(3)如图所示,连接AD,D为BC的中点,且AD平分,FAD=180°-CAD=135°,EBD=180°-ABC=135°,FAD=EBD,在在和中,BDEADF(SAS),【点睛】本题主要考查了三角形中位线定理,全等三角形的性质与判定,等腰直角三角形的性质等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件3、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键4、图(1)70;图(2)100°【分析】图(1)根据三角形的一个外角等于与它不相邻的两个内角的和,图(2)根据四边形的内角和等于360°,即可求解【详解】解:由图(1)得: ,解得: ;由图(2)得: 解得:【点睛】本题主要考查了三角形的外角性质,四边形的内角和定理,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键5、(1)ACB是直角三角形,理由见解析;(2)D1(0,-1),D2(-4,1),D3(4,7)【分析】(1)根据勾股定理的判定即可确定ABC的形状;(2)根据平行四边的性质与判定定理,结合图形,即可得出答案【详解】解:(1) , ACB是直角三角形;(2) D1(0,-1),D2(-4,1),D3(4,7)【点睛】本题考查了直角三角形的判定,平行四边形的性质和判定,平面直角坐标系中点的坐标,解题的关键结合平行四边形的性质写出点的坐标