2022年强化训练北师大版七年级数学下册第五章生活中的轴对称定向测试练习题(精选).docx
-
资源ID:30733167
资源大小:818.25KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年强化训练北师大版七年级数学下册第五章生活中的轴对称定向测试练习题(精选).docx
七年级数学下册第五章生活中的轴对称定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一些美术字中,有的汉字是轴对称图形下面个汉字中,可以看作是轴对称图形的是( )ABCD2、如图为某小区分类垃圾桶上的标识,其图标部分可以看作轴对称图形的有( )A个B个C个D个3、如图,点D是FAB内的定点且AD=2,若点C、E分别是射线AF、AB上异于点A的动点,且CDE周长的最小值是2时,FAB的度数是()A30°B45°C60°D90°4、下列图案中,不是轴对称图形的为( )ABCD5、如图,将正方形图案翻折一次,可以得到的图案是( )ABCD6、下列四个图案中是轴对称图形的是()ABCD7、下列图形是四家电信公司的标志,其中是轴对称图形的是()ABCD8、下列交通标志中,是轴对称图形的是( )ABCD9、下列图形中,不是轴对称图形的是( )ABCD10、下列各图中不是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC纸片中,AB9cm,BC5cm,AC7cm,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则ADE的周长为是_cm2、如图,在平行四边形中,在内有一点,将向外翻折至,其中为其对称轴,过点,分别作,的垂线,垂足为,已知,那么_3、如图,在中,AF是中线,AE是角平分线,AD是高,则根据图形填空:(1)_,_;(2)_,_4、如图,直角三角形纸片的两直角边分别为6和8,现将ABC折叠,使点A与点B重合,折痕为DE,则CBE的周长是_5、如图所示,其中与甲成轴对称的图形是_三、解答题(5小题,每小题10分,共计50分)1、图1,图2都是3×3的正方形网格,每个小正方形的顶点称为格点A,B,C三点均在格点上,在给定的网格中,按下列要求画图:(1)在图1中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点;(2)在图2中,画一个A1B1C1,使A1B1C1与ABC关于某条直线对称,且A1,B1,C1均为格点2、已知:如图,AD是ABC的角平分线,DEAC,DE交AB于点E,DFAB,DF交AC于点F求证:DA平分EDF3、如图,将各图形补成关于直线l对称的图形4、如图,已知ABC各顶点坐标分别为A(3,2)、B(4,3)、C(1,1)(1)画出ABC关于x轴对称的A1B1C1;(2)写出ABC关于y轴对称的A2B2C2的各顶点坐标5、如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点(1)作出四边形ABCD关于直线AC对称的四边形ABCD;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P的位置-参考答案-一、单选题1、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形利用轴对称图形的定义进行判断即可【详解】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项不符合题意;故选:A【点睛】此题主要考查了轴对称图形的定义,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴2、B【详解】解:第一个图形可以看作轴对称图形,符合题意;第二个图形不可以看作轴对称图形,不符合题意;第三个图形可以看作轴对称图形,符合题意;第四个图形不可以看作轴对称图形,不符合题意;故选:B【点睛】本题考查的是轴对称图形的概念,解题的关键是掌握轴对称图形的对称轴,图形两部分折叠后可重合3、A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时CDE周长最小为DC+DE+CE=GH=2,可得AGH是等边三角形,进而可得FAB的度数【详解】解:如图,作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,连接DC,DE,此时CDE周长最小为DC+DE+CE=GH=2,根据轴对称的性质,得AG=AD=AH=2,DAF=GAF,DAB=HAB,AG=AH=GH=2,AGH是等边三角形,GAH=60°,FAB=GAH=30°,故选:A【点睛】本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题4、D【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形是轴对称图形,不符合题意;B中图形是轴对称图形,不符合题意;C中图形是轴对称图形,不符合题意;D中图形不是轴对称图形,符合题意,故选:D【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键5、B【分析】根据轴对称的性质进行解答判断即可【详解】解:利用轴对称可得将正方形图案翻折一次,可以得到的图案是,故选:B【点睛】本题考查了轴对称的性质,熟练掌握轴对称的定义与性质是解本题的关键6、D【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意; B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意; C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意; D、是轴对称图形,符合题意故答案为:D【点睛】本题考查了轴对称图形,解题关键是掌握轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形8、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可【详解】解:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误;故选C【点睛】本题考查了轴对称图形的知识,属于基础题,掌握轴对称的定义是关键9、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键10、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可【详解】解:A、等边三角形是轴对称图形,不合题意;B、平行四边形不是轴对称图形,符合题意;C、正方形是轴对称图形,不符合题意;D、圆是轴对称图形,不合题意;故选:B【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、11【分析】根据翻折的性质和题目中的条件,可以得到AD+DE的长和AE的长,从而可以得到ADE的周长【详解】解:由题意可得,BCBE,CDDE,AB9cm,BC5cm,AC7cm,AD+DEAD+CDAC7cm,AEABBEABBC954cm,AD+DE+AE11cm,即AED的周长为11cm,故答案为:11【点睛】此题考查了折叠的性质,解题的关键是能够利用折叠的有关性质进行求解2、36【分析】连接,根据折叠的性质可得,根据四边形四边形,结合已知条件即可求得【详解】解:如图,连接,将向外翻折至,其中为其对称轴,四边形四边形,故答案为:36【点睛】本题考查了轴对称的性质,利用四边形四边形结合已知条件计算是解题的关键3、6.5 45 45 【分析】(1)根据三角形高和中线的定义进行求解即可得到答案;(2)根据三角形角平分线的定义进行求解即可【详解】解:(1)在中,AF是中线,AD是高,;(2),AE是角平分线,故答案为:6.5,;45,45【点睛】本题主要考查了三角形高,角平分线和中线的定义,解题的关键在于能够熟练掌握相关知识进行求解4、14【分析】根据图形翻折变换的性质得出AEBE,进而可得出CBE的周长ACBC【详解】解:BDE是ADE翻折而成,AEBE,CBE的周长BCBECEBCAECEBCAC,角三角形纸片的两直角边长分别为6和8,CBE的周长是14故答案为:14【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键5、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义三、解答题1、(1)见解析(答案不唯一);(2)见解析(答案不唯一)【分析】(1)AB是3×1网格的对角线,在3×3正方形网格中找一个3×1或1×3的长方形网格的对角线MN,且不与AB重合,MN关于某条直线与AB对称的即可;(2)以正方形网格的过点A的对角线所在的直线为对称轴即可画出满足题意的A1B1C1【详解】(1)如图所示中的MN与AB关于某条直线对称(2)如图所示中画的A1B1C1即满足条件【点睛】本题考查了作轴对称图形,掌握轴对称图形的含义是作图的关键2、见解析【分析】根据角平分线的定义可得DAE=DAF,再根据两直线平行,内错角相等可得ADE=DAF,ADF=DAE,从而得解【详解】解:DEAC,ADE=DAF,DFAB,ADF=DAE,又AD是ABC的角平分线,DAE=DAF,ADE=ADF DA平分EDF【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用3、见解析【分析】根据轴对称图形的性质,先找出各关键点关于直线l的对称点,再顺次连接即可【详解】解:关于直线l对称的图形如图所示 【点睛】本题考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始4、(1)见解析;(2)A2(3,2),B2(4,3),C2(1,1)【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,可得答案【详解】解:(1)如图,即为所求;(2)根据题图可知,的各点坐标是:A(-3,2),B(-4,3),C(-1,1),则关于y轴对称的的各点坐标分别是:A2(3,2),B2(4,3),C2(1,1)【点睛】本题主要考查作图轴对称变换,掌握轴对称变换的定义和性质,并据此得出变换后的对应点是解题的关键5、(1)见解析;(2)9;(3)见解析【分析】(1)分别作出两点关于直线的对称点,连接,四边形ABCD即为所求四边形;(2)根据网格的特点,S四边形ABCDSABD+SBCD即可求得答案;(3)连接与直线交于点,由,可得P到D、E的距离之和最小,则点即为所求作的点【详解】(1)如图,分别作出两点关于直线的对称点,连接,四边形ABCD即为所求四边形;(2)S四边形ABCDSABD+SBCD= =9;(3)如图, 连接与直线交于点,由,可得P到D、E的距离之和最小,则点即为所求作的点;【点睛】本题考查了轴对称作图,轴对称的性质,求网格中四边形的面积,掌握轴对称的性质是解题的关键