人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(精选).docx
-
资源ID:30737650
资源大小:939.30KB
全文页数:40页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(精选).docx
人教版九年级数学下册第二十八章-锐角三角函数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,C=90°,若BC=4,则AB的长为( )A6BCD2、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()A B C D3、如图,过点O、A(1,0)、B(0,)作M,D为M上不同于点O、A的点,则ODA的度数为()A60°B60°或120°C30°D30°或150°4、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD5、如图,在正方形中、是的中点,是上的一点,则下列结论:(1);(2);(3);(4)其中结论正确的个数有( )A1个B2个C3个D4个6、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD7、等腰三角形的底边长,周长,则底角的正切值为( )ABCD8、如图所示,某村准备在坡角为的山坡上栽树,要求相邻两棵树之间的水平距离为(m),那么这两棵树在坡面上的距离AB为( )Amcos(m)B(m)Cmsin(m)D(m)9、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46°,若测得PC50米,则小河宽PA为()A50sin44°米B50cos44°C50tan44°米D50tan46°米10、下列叙述正确的有()圆内接四边形对角相等;圆的切线垂直于圆的半径;正多边形中心角的度数等于这个正多边形一个外角的度数;过圆外一点所画的圆的两条切线长相等;边长为6的正三角形,其边心距为2A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在4×4的正方形网格中,ABC的顶点都在边长为1的小正方形的顶点上,则tanACB的值为 _2、如图,在平面直角坐标系xOy中,点B在x轴正半轴上,点D在y轴正半轴上,C经过A,B,D,O四点,OAB120°,OB4,则点D的坐标是_3、如图,在中,点D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,则EF的长为_4、规定: ,据此判断下列等式成立的是:_(写出所有正确的序号)cos(60º) ,sin75º,5、计算:2cos60°+(1)0_三、解答题(5小题,每小题10分,共计50分)1、定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准对(记作qad)如图1,在ABC中,AHBC于点H,则qadBAC当qadBAC时,则称BAC为这个三角形的“金角”已知在矩形ABCD中,AB3,BC6,ACE的“金角”EAC所对的边CE在BC边上,将ACE绕点C按顺时针方向旋转(0°90°)得到A'CE',A'C交AD边于点F(1)如图2,当45°时,求证:ACF是“金角”(2)如图3,当点E'落在AD边上时,求qadAFC的值2、如图,平地上两栋建筑物AB和CD相距30m,在建筑物AB的顶部测得建筑物CD底部的俯角为26.6°,测得建筑物CD顶部的仰角为45°求建筑物CD的高度(参考数据:sin26.6°0.45,cos26.6°0.89,tan26.6°0.50)3、如图1,已知抛物线yx2+x+1与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C(1)点C的坐标是 ,点B的坐标是 ;(2)M为线段BC上方抛物线上一动点,连接MC、MB,求MBC面积的最大值,并求出此时M的坐标;(3)如图2,T为线段CB上一动点,将OCT沿OT翻折得到OCT,当OCT与OBC的重叠部分为直角三角形时,求BT的长(4)如图3,动点P从点O出发沿x轴向B运动,过点P作CP的垂线交CB于D点P从O运动到B的过程中,点D运动所经过的路径总长等于 4、已知:为的直径,四边形为的内接四边形,分别连接、,交于点,且(1)如图1,求证:;(2)如图2,延长交的延长线于点,交于点,连接,求证:;(3)如图3,在(2)的条件下,交于点,若,求的长5、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60°,看雕塑底部C的仰角为45°,求雕塑CD的高度(最后结果精确到0.1米,参考数据:)-参考答案-一、单选题1、A【分析】由题意直接根据三角函数定义进行分析计算即可得出答案【详解】解:C=90°,BC=4,,.故选:A.【点睛】本题考查解直角三角形中三角函数的应用,熟练掌握直角三角形边角之间的关系是解题的关键2、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出ABD为等腰直角三角形,再根据45°角的余弦值即可得出答案【详解】解:如图所示,过点A作ADBC交BC延长线于点D,AD=BD=4,ADB=90°,ABD为等腰直角三角形,B=45°故选B【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解3、D【分析】连接,先利用正切三角函数可得,再分点在轴上方的圆弧上和点在轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得【详解】解:如图,连接,在中,由题意,分以下两种情况:(1)如图,当点在轴上方的圆弧上时,由圆周角定理得:;(2)如图,当点在轴下方的圆弧上时,由圆内接四边形的性质得:;综上,的度数为或,故选:D【点睛】本题考查了正切、圆周角定理、圆内接四边形的性质等知识点,正确分两种情况讨论是解题关键4、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形5、B【分析】首先根据正方形的性质与同角的余角相等证得:BAECEF,则可证得正确,错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABEAEF,即可求得答案【详解】解:四边形ABCD是正方形,BC90°,ABBCCD,AEEF,AEFB90°,BAEAEB90°,AEBFEC90°,BAECEF,BAECEF,BECE,BE2ABCFAB2CE,CFCECD,CD=4CF,故正确,错误,tanBAEBE:AB,BAE30°,故错误;设CFa,则BECE2a,ABCDAD4a,DF3a,AE2a,EFa,AF5a,ABEAEF90°,ABEAEF,故正确故选:B【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质熟练掌握相似三角形的判定与性质是解题的关键6、D【分析】根据DAC60°,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得EDFEFDDEF60°,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60°,ODOA,OAD为等边三角形,DOADAOODA60°,ADOD,DFE为等边三角形,EDFEFDDEF60°,DFDE,BDE+FDOADF+FDO60°,BDEADF,ADF+AFD+DAF180°,ADF+AFD180°DAF120°,EFC+AFD+DFE180°,EFC+AFD180°DFE120°,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60°,EDF60°,ADFODE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60°,COD180°AOD120°,COECODDOE120°60°60°,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60°,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,OEODADABtanABD6tan30°2,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全等三角形判定和性质、等边三角形判定和性质等相关知识7、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键8、B【分析】直接利用锐角三角函数关系得出,进而得出答案【详解】由题意可得:,则AB=故选:B【点睛】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键9、C【分析】先根据APPC,可求PCA=90°-46°=44°,在RtPCA中,利用三角函数AP=米即可【详解】解:APPC,PCA+A=90°,A=46°,PCA=90°-46°=44°,在RtPCA中,tanPCA=,PC=50米,AP=米故选C【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键10、B【分析】利用圆内接四边形的性质可判断;根据圆的切线性质可判断;根据正多边形性质可判断;根据正三角形边长为6,连接OB、OC;先求出中心角BOC,根据等腰三角形性质,求出BOD×120°60°,利用锐角三角函数可求OD×6×即可【详解】解:圆内接四边形对角互补但不一定相等,故不符合题意;圆的切线垂直于过切点的半径,故不符合题意;正n多边形中心角的度数等于,这个正多边形的外角和为360°,一个外角的度数等于正确,故符合题意;过圆外一点所画的圆的两条切线长相等,正确,故符合题意;如图,ABC为正三角形,点O为其中心;ODBC于点D;连接OB、OC;OBOC,BOC×360°120°,BDBC3,BOD×120°60°,tanBOD,OD×6×,即边长为6的正三角形的边心距为,故不符合题意,故选:B【点睛】本题考查圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距,掌握圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距是解题关键二、填空题1、【解析】【分析】先根据勾股定理求出AC,再根据等积关系求出BD,再根据勾股定理求出AD以及CD,最后再求出角的正切值即可【详解】解:过点B作BDAC于点D,如图,由勾股定理得, 根据等积关系得, 由勾股定理得, 故答案为:【点睛】本题考查解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题2、 (0,4)【解析】【详解】先利用圆内接四边形的性质得到BDO60°,解直角三角形求出OD,可得结论【分析】解:四边形ABDO为圆的内接四边形,OAB+BDO180°,BDO180°120°60°,DOB90°,在RtABO中,tanBDO,OB4OD4,D(0,4)故答案为:(0,4)【点睛】本题考查了圆周角定理,圆内接四边形的性质,解直角三角形等知识,解题的关键是证明BDO60°3、【解析】【分析】延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,根据点D为BC中点,得出BD=CD,先证BDECDG(SAS),可得BE=CG=3,B=GCD,得出GCH=DCG+ACB=B+ACB=60°,根据30°直角三角形先证可得HC=,利用锐角三角函数可求GH=cos30°GC=,在RtGHF中,FG=,再证,即,根据三角函数可求即可【详解】解:延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,点D为BC中点,BD=CD,在BDE和CDG中,BDECDG(SAS),BE=CG=3,B=GCD,B+ACB=180°-BAC=180°-120°=60°,GCH=DCG+ACB=B+ACB=60°,在RtGCH中,HGC=90°-HCG=30°,HC=,GH=cos30°GC=,CF=5,HF=CF-CH=5,在RtGHF中,FG=,即,在RtEFG中,故答案为【点睛】本题考查三角形全等判定与性质,三角形内角和,30°直角三角形性质,锐角三角函数,勾股定理,直角三角形判定与性质,本题难度较大,综合性强,利用辅助线构造准确图形是解题关键4、【解析】【分析】根据规定运算法则可得,由此可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可得【详解】解:,等式不成立;,等式成立;,等式成立;,等式成立;综上,等式成立的是,故答案为:【点睛】本题考查了正弦和余弦,掌握理解规定的三角函数运算法则是解题关键5、2【解析】【分析】本题涉及零指数幂、特殊角的三角函数值等考点针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:2cos60°+(1)0=1+1=2故答案为:2【点睛】本题考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是掌握零指数幂、特殊角的三角函数值等考点的运算三、解答题1、(1)见解析(2)【解析】【分析】(1)过点作于点,解直角三角形求得,进而证明,根据“金角”的定义即可证明当45°时,ACF是“金角”(2)过点作于点,证明,可得,设,则,根据勾股定理列出方程,解方程即可求得,进而根据定义即可求得答案【详解】解:(1)四边形ABCD是矩形,ACE的“金角”EAC所对的边CE在BC边上, ,BC6,将ACE绕点C按顺时针方向旋转45°得到A'CE',即如图,过点作于点, 在中,,又设,则在中,在中,四边形是平行四边形当45°时,ACF是“金角”(2)如图,过点作于点由(1)可知,则由旋转的性质可得,在中,则在中在等腰直角三角形中,设,则,在中,即解得(舍)则【点睛】本题考查了“准对”,三角形的“金角”的定义,解直角三角形,相似三角形的性质,矩形的性质,旋转的性质,理解新定义是解题的关键2、建筑物CD的高度约为45m【解析】【分析】如图所示,过点A作AECD于E,先证明AE=CE,然后证明四边形ABDE是矩形,则AE=BD=30m,CE=AE=30m,由此即可得到答案【详解】解:如图所示,过点A作AECD于E,AEC=AED=90°,CAE=45°,C=45°,C=CAE,AE=CE,ABBD,CDBD,ABD=BDE=90°,四边形ABDE是矩形,AE=BD=30m,CE=AE=30m,CD=CE+DE=45m,答:建筑物CD的高度约为45m【点睛】本题主要考查了矩形的性质与判定,等腰直角三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线求解3、(1)(0,1),(2,0);(2)SMBC最大值1, M(1,);(3)1或2或;(4)35【解析】【分析】(1)令y0,可求B点坐标,令x0,可求C点坐标;(2)求出直线BC的解析式为yx+1,过点M作MNx轴交直线BC于点N,设M(t,t2+t+1),则N(t,t+1),SMBC(t1)2+1,当t1时,SMBC有最大值1,M(1,);(3)分三种情况讨论:当TC'与BO垂直时,即OGT90°,CT1,CB,BT1;当OTC'90°时,CT,BT;当OC'与BC垂直时,即OHB90°,OH,CH,BH,在RtTC'H中,(TH)2TH2+(1)2,求出TH2,则BTBH+TH2;(4)设OPm,则CP,过点P作PFCB交于点F,当COPCPD时,PBm,则有m+m2,可求m,PB,CD,BD,当P点从O点运动,D点从B点开始向C点方向运动,到达COPCPD时,BD的长度达到最大值,当P点再向B点运动时,D点又向B点运动,直到D点回到B点,所以点D运动所经过的路径总长是BD长度的2倍,可求2BD35【详解】解:(1)令y0则x2+x+10,x2或x,B(2,0),令x0则y1,C(0,1),故答案为:(0,1),(2,0);(2)设直线BC的解析式为ykx+b,yx+1,如图,过点M作MNx轴交直线BC于点N,设M(t,t2+t+1),则N(t,t+1),MNt2+t+1+t1t2+2t,SMBC×2×(t2+2t)(t1)2+1,M为线段BC上方抛物线上一动点,0t2,当t1时,SMBC有最大值1,M(1,);(3)如图1,当TC'与BO垂直时,即OGT90°,TGCO,COTOTC',CTOOTC',CTOCOT,COCT,OC1,CT1,BO2,CB,BT1;如图2,当OTC'90°时,OCC'O1,COTOBC,sinCBO,CT,BT;如图3,当OC'与BC垂直时,即OHB90°,在RtOHB中,sinOBH,OH,在RtOCH中,CH,BH,OCOC'1,C'H1,CTC'T,CTCHTHTH,在RtTC'H中,C'T2TH2+C'H2,(TH)2TH2+(1)2,TH2,BTBH+TH+22;综上所述:BT的长为1或2或;(4)如图4,CPPD,CPD90°,设OPm,CP,过点P作PFCB交于点F,当COPCPD时,OCPCPD,OPPFm,sinOBC,PBm,m+m2,m,PB,CD1+m21+()2,BD,当P点从O点运动,D点从B点开始向C点方向运动,到达COPCPD时,BD的长度达到最大值,当P点再向B点运动时,D点又向B点运动,直到D点回到B点,点D运动所经过的路径总长是BD长度的2倍,2BD35,点D运动所经过的路径总长等于35,故答案为:35【点睛】本题考查了二次函数的动点运动的综合问题,对于运动型几何问题中的函数应用问题,解题时应深入理解运动图形所在的条件与环境,用运动的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化的不变量、不变关系和特殊关系,然后化“动态”为“静态”、化“变化”为“不变”,通过分析找出题中各图形的结合点,借助函数的性质予以解决 当图形(或某一事物)在运动的过程中达到最大值或最小值时,其位置必定在一个特殊的位置,这是普遍规律4、(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE/AC,再证明,即可证得结论;(2)根据三角形外角的性质可证得结论;(3)连接AB,由圆周角定理得,设,得,再证明,证明得,通过解直角三角形求出a的值和,再证明,根据相似三角形的性质可得出,根据可得结论【详解】解:(1)证明:DE/为的直径,即(2)证明:是DEG的外角, (3)连接AB,如图,BD是的直径在中,设,则,由勾股定理得: 和所对的弧都是 在和中 在中, 在中, 由勾股定理得, ,在中, BHM=BED=90°,HBM=EBD ,即解得,【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题5、米【解析】【分析】首先分析图形:根据题意构造两个直角三角形、,再利用其公共边求得、,再根据计算即可求出答案【详解】解:在中,米,在中,米,则米故塑像的高度大约为米【点睛】本题考查解直角三角形的知识,解题的关键是要先将实际问题抽象成数学模型分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系