人教版九年级数学下册第二十六章-反比例函数章节训练练习题(名师精选).docx
-
资源ID:30738289
资源大小:694.57KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版九年级数学下册第二十六章-反比例函数章节训练练习题(名师精选).docx
人教版九年级数学下册第二十六章-反比例函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线与反比例函数的图像交于A,B两点,则下列结论错误的是( )AB当A,B两点重合时,C当时,D不存在这样的k使得是等边三角形2、已知函数是反比例函数,则的值为( )A1B1C±1D±23、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S24、下列函数值随自变量增大而增大的是( )ABCD5、如图,等腰中,点B在y轴上,/x轴,反比例函数(,)的图象经过点A,交BC于点D若,则k的值为( )A60B48C36D206、下列图形既是轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形7、下列各点在反比例函数的图象上的是( )ABCD8、如图,已知反比例函数的图象上有一点,轴于点,点在轴上,的面积为3,则的值为( )A6B12CD9、如图,两个反比例函数和在第一象限内的图象分别是和,点P在上,轴于点,交于点B,连接,则的面积为( )A1B2C4D810、点,都在反比例函数的图象上,若,则( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD为矩形,E为对角线AC的中点,A、B在x轴上若函数y = (x)的图像过D、E两点,则矩形ABCD的面积为_ 2、如图,直线与y轴交于点A,与双曲线在第一象限交于B,C两点,且,则_3、如图,矩形OABC的两边OA、OC分别在x轴和y轴上,以AC为边作平行四边形ACDE,E点在CB的延长线上,反比例函数过B点且与CD交于F点,则的值为_4、如图,在反比例函数的图象上有点,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则的值为_5、点三点都在反比例函数图象上,则、的大小关系是_(用“<”号连接)三、解答题(5小题,每小题10分,共计50分)1、一次函数ykx+b的图象与反比例函数y的图象交于点A(2,1),B(1,n)两点(1)求反比例函数的解析式及一次函数的解析式;(2)求AOB的面积2、如图,点P是反比例函数图象上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A,B两点,交反比例函数(且)的图象于E,F两点,连接(1)四边形的面积 (用含的式子表示);(2)设P点坐标为点E的坐标是( , ),点F的坐标是( , )(用含的式子表示);若的面积为,求反比例函数的解析式3、某面粉车间安装了粉尘检测仪,工人加工4 h后粉尘检测仪开始报警,工人立即停止加工并对车间进行自然通风除尘如图,线段DE表示工人加工时粉尘检测仪显示的数据与时间x(h)之间的函数关系(),反比例函数对应曲线EF,表示通风除尘期间粉尘检测仪显示的数据与时间x(h)之间的函数关系根据图像解答下列问题:(1)求粉尘检测仪在工人加工前显示的数据(2)当车间内粉尘指数在50100之间时,室内空气质量为良,求该车间空气质量保持良的时间4、如图,在平面直角坐标系中,反比例函数y(x0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数y(x0)的图象上,过A,B两点的直线yk2x+b与y轴交于点C(1)求a的值及点C的坐标(2)在y轴上有一点D(0,5),连接AD,BD,求ABD的面积(3)结合图象,直接写出k2x+b的解集5、如图:一次函数的图象与反比例函数的图象交于、两点(1)求反比例函数和一次函数的解析式;(2)求的面积-参考答案-一、单选题1、D【分析】先联立联立得到,设A点坐标为(,),B点坐标为(,),然后分别求出OA,OB,即可判断A;根据A、B重合,则方程只有一个实数根,即,由此即可判断B;把代入中即可判断C;若AOB是等边三角形,则OA=AB,然后求出AB的长,令AB=OA,求出k的值,即可判断D【详解】解:联立得到,设A点坐标为(,),B点坐标为(,),A、B是直线与反比例函数的两个交点,故A选项不符合题意;A、B重合,则方程只有一个实数根,解得或(舍去),故B选项不符合题意;当时,故C选项不符合题意;若AOB是等边三角形,则OA=AB,解得或(舍去),存在,使得AOB是等边三角形,故D选项符合题意;故选D【点睛】本题主要考查了反比例函数与一次函数综合,两点距离公式,等边三角形的性质,一元二次方程根于系数的关系,一元二次方程根的判别式等等,解题的关键在于能够熟练掌握相关知识进行求解2、A【分析】根据反比例函数的定义,反比例函数的一般式是y= (k0),即可得到关于n的方程,解方程即可求出n【详解】解:函数是反比例函数,n+10且n221,n1,故答案选A【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般式y= (k0),特别注意不要忽略k0这个条件3、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键4、D【分析】根据一次函数、反比例函数、二次函数的图像与性质即可依次判断【详解】解:A. ,随自变量增大而减小,故此选项不合题意;B. ,每个象限内,随自变量增大而增大,故此选项不合题意;C. ,每个象限内,随自变量增大而减小,故此选项不合题意;D. ,当时,随自变量增大而增大,故此选项符合题意;故选:D【点睛】此题主要考查函数的增减性,解题的关键是熟知各函数的性质特点5、A【分析】过A作AEBC于E交x轴于F,则由三线合一定理得到,即可利用勾股定理求出,设OB=a,由BD=AB=5,得到A点坐标为(4,a+3),D点坐标为(5,a),再由反比例函数(,)的图象经过点A,交BC于点,由此求解即可【详解】解:过A作AEBC于E交x轴于F,设OB=a,BD=AB=5,A点坐标为(4,a+3),D点坐标为(5,a),反比例函数(,)的图象经过点A,交BC于点,解得:a=12,k=60,故选A【点睛】本题主要考查了坐标与图形,三线合一定理,勾股定理,反比例函数图像上点的坐标特点,解题的关键在于能够熟练掌握相关知识进行求解6、B【分析】根据“如果一个平面图形沿一条直线折叠,直线两旁部分能够互相重合,那么这个图形就叫做轴对称图形”及“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,结合二次函数的图象及反比例函数的图象,进而问题可求解【详解】解:A、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;B、双曲线是中心对称图形,也是轴对称图形,故符合题意;C、抛物线是轴对称图形,但不是中心对称图形,故不符合题意;D、平行四边形是中心对称图形但不是轴对称图形,故不符合题意;故选B【点睛】本题主要考查轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象,熟练掌握轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象是解题的关键7、A【分析】根据得k=xy=2,所以只要点的横坐标与纵坐标的积等于2,就在函数图象上【详解】解:k=xy=2,Axy=1×2=k,符合题意;Bxy=2×(-1)=-2k,不合题意;Cxy=-2×1=-2k,不合题意;Dxy=2×0=0k,不合题意故选:A【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数8、D【分析】先过P点作PCy轴,设P点坐标为(m,n),通过SPAB= S梯形APCB一SPCB ,求出mn的值,可得答案【详解】解:如下图,过P点作PCy轴,设P点坐标为(m,n),则AP=-n,CP=m, SPAB= S梯形APCB一SPCB = (AP+ BC) ×CP-×CP×BC= = PAB的面积为3,3=mn=-6,P点在反比例函数的图象上, k=mnk=-6故选:D【点睛】本题考查了反比例函数的图象和性质、三角形面积的问题,做题的关键是求出mn的值9、A【分析】根据反比例函数(k0)系数k的几何意义得到SPOA=×4=2,SBOA=×2=1,然后利用SPOB=SPOA-SBOA进行计算即可【详解】解:PAx轴于点A,交C2于点B,SPOA=×4=2,SBOA=×2=1,SPOB=2-1=1故选:A【点睛】本题考查了反比例函数(k0)系数k的几何意义:从反比例函数(k0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|10、C【分析】由k=20,可得反比例函数图象在第一,三象限,根据函数图象的增减性可得结果【详解】解:k=20,此函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小,x1x20,点A(x1,y1),B(x2,y2)位于第三象限,y2y10,故选:C【点睛】本题考查的是反比例函数图象上点的坐标特点,熟练掌握反比例函数的增减性是解题关键二、填空题1、8【解析】【分析】过作于,由三角形中位线定理可得,设点的横坐标为,点坐标为,得出,即可得出,根据图象上的坐标特征得出的横坐标为,继而得出,然后根据矩形的面积公式计算即可【详解】解:过作于,点是矩形对角线的交点,是的中位线,设点的横坐标为,且点在反比例函数上,点坐标为,矩形的面积,故答案为:8【点睛】主要考查了反比例函数中的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即2、2【解析】【分析】如图所示,过点B作BEAO于E,过点C作CFAO于F,设直线与x轴的交点为G,先求出ABE=45°,得到AE=BE,同理可得,再联立得,则,由此求解即可【详解】解:如图所示,过点B作BEAO于E,过点C作CFAO于F,设直线与x轴的交点为G,A、G分别是直线与y轴,x轴的交点,A点坐标为(0,b),G点坐标为(b,0),OA=OG,OAG=OGA=45°,ABE=45°,AE=BE,同理可得,设B点坐标为(m,-m+b),C点坐标为(n,-n+b),联立得,即,【点睛】本题主要考查了一次函数与反比例函数综合,一元二次方程根与系数的关系,等腰直角三角形的性质与判定,勾股定理等等,解题的关键在于能够正确作出辅助线求解3、28【解析】【分析】分别过点D,点F作BC的垂线,垂足分别为点N,点M,设OA=a,OC=b,则可以表达点E,点D的纵坐标,进而可表达点F的坐标,根据SABF=6可求出k的值【详解】解:如图,分别过点D,点F作BC的垂线,垂足分别为点N,点M,DNFM,CF:CD=FM:DN,设OA=a,OC=b,A(a,0),C(0,b),B(a,b),点E在CB的延长线上,点E的纵坐标为b,反比例函数(x0)过B点,k=ab,四边形ACDE是平行四边形,ACDE,点D的纵坐标为2b,DN=b,FM=,点F的纵坐标为,点F在反比例函数(x0)上,F(,),BM=,SABF=6,解得,即k=28故答案为:28【点睛】本题主要考查反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,矩形的性质,平行四边形的性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键4、9.6【解析】【分析】由题意易知点P1的坐标为(2,6),然后根据平移可把右边三个矩形进行平移,进而可得S1+S2+S3+S4S矩形ABCP1,最后问题可求解【详解】解:当x2时,y6,点P1的坐标为(2,10),如图所示,将右边三个矩形平移,把x10代入反比例解析式得:y1.2,P1CAB61.24.8,则S1+S2+S3+S4S矩形ABCP14.8×29.6,故答案为:9.6【点睛】本题主要考查反比例函数比例系数的几何意义,熟练掌握反比例函数的几何意义是解题的关键5、【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论【详解】解:反比例函数中,k=-10,函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大-2-10,30,点A(-2,y1),B(-1,y2)在第二象限,点C(3,y3)在第四象限,y3y1y2故答案为:y3y1y2【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键三、解答题1、(1)y;yx1;(2)AOB的面积为【分析】(1)利用待定系数法求解反比例函数和一次函数的解析式即可;(2)设与轴交点为,则AOB的面积为和的面积和【详解】解:(1)将点(2,1)代入,得:,解得:m2,则反比例函数解析式为:;将点B(1,n)代入,得:n2,将点A、B的坐标代入一次函数解析式,得:,解得:,故一次函数解析式为:(2)一次函数解析式为:,令y0,则x1,点C的坐标为(1,0),OC1,【点睛】本题主要考查了待定系数法求反比例函数及一次函数解析式,根据已知得出B点坐标是解题的关键,并利用数形结合的思想求解2、(1)k1-k2;(2)2,;,3;【分析】(1)根据反比例函数中比例系数k的几何意义即可解答;(2)根据PEx轴,PFy轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,分别把P点的横纵坐标代入反比例函数y=即可求出E、F两点的坐标;先根据P点的坐标求出k1的值,再由E、F两点的坐标用k2表示出PE、PF的长,再用k2表示出PEF的面积,把(1)的结论代入求解即可【详解】解:(1)P是点P是反比例函数y= (k10,x0)图象上一动点,S矩形PBOA=k1,E、F分别是反比例函数y=(k20且|k2|k1)的图象上两点,SOBF=SAOE=|k2|,四边形PEOF的面积S1=S矩形PBOA+SOBF+SAOE=k1+|k2|,k20,四边形PEOF的面积S1=S矩形PBOA+SOBF+SAOE=k1+|k2|=k1-k2故答案为:k1-k2;(2)PEx轴,PFy轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,E、F两点的坐标分别为E(2,),F(,3);故答案为:2,;,3;P(2,3)在函数y=的图象上,k1=6,E、F两点的坐标分别为E(2,),F(,3);PE=3-,PF=2-,SPEF=,SOEF=,k20,k2=-9反比例函数y=的解析式为【点睛】本题考查了反比例函数综合题,涉及到反比例函数系数k的几何意义及三角形的面积公式、两点间的距离公式,涉及面较广,难度较大3、(1);(2)h【分析】(1)当时,设y与x之间的函数关系式为,求出,令,求得,由此即可得到答案;(2)先求出E点的坐标,从而求出反比例函数的解析式,然后分别把,代入反比例函数和一次函数中进行求解即可【详解】解:(1)当时,设y与x之间的函数关系式为由题意得解得,当时,粉尘检测仪在工人加工前显示的数据为;(2)将代入,得,点点E在反比例函数的图像上,即反比例函数的表达式为,把,分别代入当时,;当时,把,分别代入,当时,;当时,该车间空气质量保持良的时间为h答:该车间空气质量保持良的时间为h【点睛】本题主要考查了一次函数和反比例函数的实际应用,解题的关键在于能够正确读懂函数图像4、(1);C(0,9);(2)SABD;(3)【分析】(1)由点A(2,6)求出反比例函数的解析式为y,进而求得B(4,3),由待定系数法求出直线AB的解析式为yx9,即可求出C点的坐标;(2)由(1)求出CD,根据SABDSBCDSACD可求得结论;(3)直接根据函数图像解答即可【详解】解:(1)把点A(2,6)代入y,2×612,反比例函数的解析式为y,将点A向右平移2个单位,x4,当x4时,y3,B(4,3),直线AB的解析式为yk2x+b,由题意可得,解得,yx9,当x0时,y9,C(0,9);(2)由(1)知CD954,SABDSBCDSACDCD|xB|CD|xA|×4×4×4×24;(3)A(2,6),B(4,3),根据图像可知k2x+b的解集为【点睛】本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB的解析式是解题的关键5、(1),;(2)3【分析】(1)先根据点的坐标,利用待定系数法可求出反比例函数的解析式,再求出点的坐标,然后根据点的坐标,利用待定系数法可得一次函数的解析式;(2)如图(见解析),先求出点的坐标,再根据的面积等于的面积与的面积之和即可得【详解】解:(1)将点代入反比例函数得:,则反比例函数的解析式为,将点代入反比例函数得:,即,将点一次函数得:,解得,则一次函数的解析式为;(2)如图,对于一次函数,当时,解得,即,则,即的面积为3【点睛】本题考查了反比例函数与一次函数的综合等知识点,熟练掌握待定系数法是解题关键