[中考专题]2022年湖南省隆回县中考数学五年真题汇总-卷(Ⅲ)(含答案及解析).docx
-
资源ID:30739056
资源大小:319.59KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
[中考专题]2022年湖南省隆回县中考数学五年真题汇总-卷(Ⅲ)(含答案及解析).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年湖南省隆回县中考数学五年真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x,y的方程组和的解相同,则的值为( )A1B1C0D20212、已知,则代数式的值是( )A3B3C9D183、菱形ABCD的周长是8cm,ABC60°,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm4、若关于x的不等式组无解,则m的取值范围是( )ABCD5、若关于x的一元二次方程ax24x20有两个实数根,则a的取值范围是( )Aa2Ba2且a0Ca2Da2且a06、若,则下列分式化简正确的是( )ABCD7、若二次函数的图象经过点,则a的值为( )A-2B2C-1D18、下列说法中错误的是( )A若,则B若,则C若,则D若,则9、下列关于x的方程中一定有实数根的是( )Ax2x1B2x26x+90Cx2+mx+20Dx2mx2010、为迎接建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖下列关于成绩的统计量中,与被遮盖的数据无关的是( )成绩/分919293949596979899100人数1235681012A平均数,方差B中位数,方差C中位数,众数D平均数,众数第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_cm22、已知代数式的值是2,则代数式的值为_3、已知点P在线段AB上,如果AP2ABBP,AB4,那么AP的长是_4、用长的铁丝,折成一个面积是的矩形,则这个矩形的长和宽分别为_· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、已知某数的相反数是2,那么该数的倒数是 _三、解答题(5小题,每小题10分,共计50分)1、我们定义:如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”(1)请说明方程是倍根方程;(2)若是倍根方程,则,具有怎样的关系?(3)若一元二次方程是倍根方程,则,的等量关系是_(直接写出结果)2、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润月销售量×(售价进价)(1)求y关于x的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m元利润()给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围3、(1)解方程:x²-2x-8=0;(2)计算:5sin60°-cos245°4、解方程:5、(1)计算:(2)用适当的方法解一元二次方程:-参考答案-一、单选题1、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求【详解】解:联立得:,解得:,则有,解得:,故选:B【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2、C【分析】由已知得到,再将变形,整体代入计算可得【详解】解:,=9故选:C【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用3、B【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60°,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法4、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围【详解】解:解不等式得:,解不等式得:,不等式组无解,解得:,故选:D· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键5、B【分析】根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案【详解】解:根据题意得a0且(4)24a20,解得a2且a0故选:B【点睛】本题考查了根的判别式:一元二次方程ax2bxc0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程无实数根6、C【分析】由,令,再逐一通过计算判断各选项,从而可得答案.【详解】解:当,时,故A不符合题意;,故B不符合题意;而 故C符合题意;故D不符合题意故选:C【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.7、C【分析】把(-2,-4)代入函数y=ax2中,即可求a【详解】解:把(-2,-4)代入函数y=ax2,得4a=-4,解得a=-1故选:C【点睛】本题考查了点与函数的关系,解题的关键是代入求值8、C【分析】根据不等式的性质进行分析判断【详解】解:A、若,则,故选项正确,不合题意;B、若,则,故选项正确,不合题意;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·C、若,若c=0,则,故选项错误,符合题意;D、若,则,故选项正确,不合题意;故选C【点睛】本题考查了不等式的性质解题的关键是掌握不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变9、D【分析】分别求出方程的判别式,根据判别式的三种情况分析解答【详解】解:A、x2x1,该方程没有实数根;B、2x26x+90,该方程没有实数根;C、x2+mx+20,无法判断与0的大小关系,无法判断方程根的情况;D、x2mx20,方程一定有实数根,故选:D【点睛】此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键10、C【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C【点睛】考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提二、填空题1、【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x60,x2,三边分别为10cm,24cm,26cm,102+242262,三角形为直角三角形,S10×24÷2120cm2故答案为:120【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键2、1【分析】把变形为,然后把=2代入计算【详解】解:代数式的值是2,=2,=3-4=-1故答案为:-1【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算3、22【分析】先证出点P是线段AB的黄金分割点,再由黄金分割点的定义得到APAB,把AB4代入计算即可【详解】解:点P在线段AB上,AP2ABBP,点P是线段AB的黄金分割点,APBP,APAB×422,故答案为:22【点睛】本题考查了黄金分割点,牢记黄金分割比是解题的关键4、6cm,5cm【分析】设长是x厘米,则宽是(11-x)cm,根据矩形的面积公式即可列出方程求解【详解】解:设长是x厘米,则宽是(11-x)cm,根据题意得:x(11-x)=30,整理得解得:x1=5,x2=6,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·则当x=5时,11-x=6(cm);当x=6时,11-x=5(cm),则长是6cm,宽是5cm,故答案为6cm,5cm【点睛】本题考查了一元二次方程的应用,熟练掌握长方形的面积公式、正确理解相等关系是解题的关键5、【分析】根据相反数与倒数的概念可得答案【详解】解:某数的相反数是2,这个数为2,该数的倒数是故答案为:【点睛】本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键三、解答题1、(1)见解析(2),或(3)【分析】(1)因式分解法解一元二次方程,进而根据定义进行判断即可;(2)因式分解法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解;(3)公式法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解(1)是倍根方程,理由如下:解方程,得,2是1的2倍,一元二次方程是倍根方程;(2)是倍根方程,且,或,或(3)解:是倍根方程,或· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·即或或即或故答案为:【点睛】本题考查了倍根方程的定义,解一元二次方程,掌握解一元二次方程的方法是解题的关键2、(1)y=-10x+700(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元(3)【分析】(1)依题意设y=kx+b,用待定系数法得到结论;(2)该商品进价是40-3000÷300=30,月销售利润为w元,列出函数解析式,根据二次函数的性质求解;(3)设利润为w元,列出函数解析式,根据二次函数的性质求解(1)解:设y=kx+b(k,b为常数,k0),根据题意得:,解得:,y=-10x+700;(2)解:当该商品的进价是40-3000÷300=30元,设当该商品的售价是x元/件时,月销售利润为w元,根据题意得:w=y(x-30)=(x-30)(-10x+700)=-10x2+1000 x-21000=-10(x-50)2+4000,当x=50时w有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;(3)解:设利润为w元,由题意得,w=y(x-30-m)=(x-30-m)(-10x+700)=-10x2+1000 x+10mx -21000-700m,对称轴是直线x=,-10<0,抛物线开口向下,在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,解得m4,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键3、(1);(2)【分析】(1)利用因式分解法求解;(2)代入特殊角的三角函数值计算即可【详解】解:(1)x²-2x-8=0; (2)原式=【点睛】此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键4、【分析】先计算右边算式,再把系数化为1即可得答案【详解】,【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键5、(1)2+;(2),【分析】(1)先计算零指数幂,分母有理化,负指数幂,特殊三角函数值,再合并同类项即可;(2)因式分解法解一元二次方程【详解】(1)解:,;(2)解:原方程分解因式得, 或,解得,【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法,掌握含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法