2022年北师大版七年级数学下册第五章生活中的轴对称同步测试练习题(精选).docx
-
资源ID:30740817
资源大小:515.68KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版七年级数学下册第五章生活中的轴对称同步测试练习题(精选).docx
七年级数学下册第五章生活中的轴对称同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC与ABC关于直线MN对称,BB交MN于点O,则下列结论不一定正确的是()AACACBBOBOCAAMNDABBC2、下列图案,是轴对称图形的为()ABCD3、下面四个图形中,是轴对称图形的是()ABCD4、下面是四家医院标志的图案部分,其中是轴对称图形的是()ABCD5、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A%BCD6、下列图案属于轴对称图形的是( )ABCD7、如图,北京2022年冬奥会会徽,是将蒙汉两种文字的“冬”字融为一体而成组成会徽的四个图案中是轴对称图形的是( )ABCD8、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是( )ABCD9、下列四个标志中,是轴对称图形的是( )ABCD10、下列有关绿色、环保主题的四个标志中,是轴对称图形是( )A B C D 第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,长方形沿折叠,使点落在边上的点处,如果,则_度2、如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有_种3、将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则CBD大小为 _度4、如图的三角形纸片中,AB7,AC5,BC6,沿过点C的直线折叠这个三角形,使点A落在BC边上的点E处,折痕为CD,则BED的周长为_5、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有_个三、解答题(5小题,每小题10分,共计50分)1、如图,在的正方形网格中,每个小正方形的边长都为1,网格中有一个格点 (即三角形的顶点都在格点上)在图中作出关于直线l对称的(要求:A与,B与,C与相对应)2、如图是一个8×10的网格,每个小正方形的顶点叫格点,每个小正方形的边长均为1,ABC的顶点均在格点上(1)画出ABC关于直线OM对称的A1B1C1(2)求出OCC1的面积3、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在ABC中,ABAC(如图),怎样证明CB呢?(分析)把AC沿A的角平分线AD翻折,因为ABAC,所以点C落在AB上的点C处,即ACAC,据以上操作,易证明ACDACD,所以ACDC,又因为ACDB,所以CB(感悟与应用)(1)如图(1),在ABC中,ACB90°,B30°,CD平分ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分DAB,CDCB求证:BD180°4、如图,小强拿一张正方形的纸片(图),将其沿虚线对折一次得图,再沿图中的虚线对折得图,然后用剪刀沿图中的虚线剪去一个角再打开,请你画出打开后的几何图形5、如图,正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A,B都在格点上,按下列要求作图,使得所画图形的顶点均在格点上(1)在图1中画一个以线段为边的轴对称,使其面积为2;(2)在图2中画一个以线段为边的轴对称四边形,使其面积为6-参考答案-一、单选题1、D【分析】根据轴对称的性质解答【详解】解:ABC与ABC关于直线MN对称,BB交MN于点O,ACAC,BOBO,AAMN,但ABBC不正确,故选:D【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键2、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:A不是轴对称图形,故本选项不符合题意;B不是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项不符合题意D是轴对称图形,故本选项符合题意;故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、D【分析】根据轴对称图形的定义判断即可【详解】不是轴对称图形,A不符合题意;不是轴对称图形,B不符合题意;不是轴对称图形,C不符合题意;是轴对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键4、A【分析】根据轴对称图形的概念逐项判断解答即可【详解】是轴对称图形,选项正确;不是轴对称图形,选项错误;不是轴对称图形,选项错误;不是轴对称图形,选项错误;故选:【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后能重合5、C【分析】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出【详解】解:根据轴对称图形的定义可得出:C选项经过对折后可完全重合,故选:C【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键6、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合7、D【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A不是轴对称图形,故本选项不合题意B不是轴对称图形,故本选项不合题意C不是轴对称图形,故本选项不合题意D是轴对称图形,故本选项符合题意故选D【点睛】本题考察了轴对称图形的概念,熟练掌握应用轴对称图形的定义解决问题是关键点8、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键9、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形10、B【分析】结合轴对称图形的概念进行求解【详解】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、20【分析】先由折叠的性质可知,故,推出,再由即可解答【详解】如图所示,连接,是沿直线折叠而成,故答案为:20【点睛】此题考查翻折变换(折叠问题),解题关键在于利用折叠的性质进行解答.2、5【分析】直接利用轴对称图形的性质分析得出答案【详解】解:如图所示:所标数字之处都可以构成轴对称图形故答案为:5【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键3、90【分析】根据折叠的性质得到ABC=ABC,EBD=EBD,再根据平角的定义有ABC+ABC+EBD+EBD=180°,易得ABC+EBD=180°×=90°,则CBD=90°【详解】因为一张长方形纸片沿BC、BD折叠,所以ABC=ABC,EBD=EBD,而ABC+ABC+EBD+EBD=180°,所以ABC+EBD=180°×=90°,即CBD=90°故答案为:90【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等也考查了平角的定义4、8【分析】由折叠可得:再求解 利用从而可得答案.【详解】解:由折叠可得: 故答案为:【点睛】本题考查的是轴对称的性质,掌握“成轴对称的两个图形的对应边相等”是解本题的关键.5、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形而三角形不一定是轴对称图形故答案为:4【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合三、解答题1、见解析【分析】作出A、B、C三点关于直线l的对称点、即可;【详解】解:如图,是关于直线l的对称图形:【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握对称轴的性质,属于中考常考题型2、(1)见解析;(2)6【分析】(1)利用轴对称的性质画出A、B、C关于直线OM的对称点A1、B1、C1即可;(2)利用三角形的面积公式计算即可【详解】解:(1)如图,A1B1C1为所作;(2)OCC1的面积4×36【点睛】本题考查了作图轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始3、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿ACB的角平分线CD翻折,点A落在BC上的点A处,连接AD,根据直角三角形的性质求出A,根据三角形的外角性质得到ADB=B,根据等腰三角形的判定定理得到AD=AB,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D处,连接CD,根据全等三角形的性质得到CD=CD=BC,D=ADC,进而证明结论;【详解】(1)解:AC+AD=BC,理由如下:如图,把AC沿ACB的角平分线CD翻折,点A落在BC上的点A处,连接AD,ACB=90°,B=30°,A=90°-B=60°,由折叠的性质可知,CA=CA,AD=AD,CAD=A=60°,B=30°,ADB=CAD-B=30°,ADB=B,AD=AB,AD=AB,BC=CA+AB=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D处,连接CD,则ADCADC,CD=CD=BC,D=ADC,B=BDC,BDC+ADC=180°,B+D=180°【点睛】本题考查的是翻折变换的性质、等腰三角形的性质,掌握翻折变换的性质是解题的关键4、见解析【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案【详解】解:如图所示:【点睛】本题考查剪纸问题,对于此类问题,只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力5、(1)作图见详解;(2)作图见详解【分析】(1)根据轴对称图形的性质及面积作图即可;(2)根据题意,作出相应轴对称图形,验证面积即可得【详解】解:(1)根据题意:为轴对称图形,面积为2,由图可得:,即为所求,(答案不唯一);(2)四边形ABDE为轴对称图形,面积为:,四边形ABDE即为所求(答案不唯一)【点睛】题目主要考查轴对称图形的作法,理解题意,熟练运用轴对称的性质是解题关键