2022中考特训:浙教版初中数学七年级下册第五章分式课时练习试卷(无超纲).docx
-
资源ID:30741211
资源大小:264.87KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022中考特训:浙教版初中数学七年级下册第五章分式课时练习试卷(无超纲).docx
初中数学七年级下册第五章分式课时练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若(a3)0有意义,则a的取值范围是()Aa3Ba3Ca0Da32、当分式的值为0时,x的值为( )A0B2C0或2D 3、下列计算中,正确的是( )ABCD4、下列分式中,把x,y的值同时扩大2倍后,值不变的是()ABCD5、据医学研究:新型冠状病毒的平均米,米用科学记数法表示为( )A米B米C米D米6、医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为()A0.6×108B6×108C60×107D0.6×1077、空气的密度是1.293×103g/cm3,用小数把它表示出来是()g/cm3A0.0001293B0.001293C0.01293D0.12938、若分式的值为零,那么( )A或B且CD9、已知, , ,则m, n, p的大小关系是( )Am < p < nBn < m < pCp < n < mDn < p < m 10、要使分式有意义,实数a必须满足()Aa2Ba2Ca2Da2且a2二、填空题(5小题,每小题4分,共计20分)1、有一批的新冠肺炎疫苗需要在规定日期内完成生产,如果交给中国独做,恰好如期完成,如果美国独做,就要超过规定4天,现在由中国和美国合作2天,剩下的由美国独做,也刚好在规定日期内完成,问中国独自完成这一批新冠肺炎疫苗需要_天2、计算:已知10x=20,10y=50-1,求4x÷22y=_3、已知,用,表示的式子为_4、计算:_5、已知a、b为实数,且,设,则M、N的大小关系是M_ N(填=、>、<、)三、解答题(5小题,每小题10分,共计50分)1、计算:2、已知,求的值3、计算或化简:(1)(3)0(0.2)2009×(5)2010 (2)2(x4)(x4)(3)(x2)2(x1)(x1)4、计算(1);(2);(3)5、观察下列等式:第一个等式:第二个等式:第三个等式:按上述规律,回答下列问题:(1)请写出第五个等式:;(2)用含n的式子表示第n个等式: (3)(得出最简结果)(4)计算:-参考答案-一、单选题1、D【分析】根据零指数幂的底数不等于0,列出不等式,即可求解【详解】解:(a3)0有意义,a30,a3,故选D【点睛】本题主要考查零指数幂有意义的条件,掌握零指数幂的底数不等于0,是解题的关键2、A【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案【详解】解:分式值为0,2x0,解得:x0故选:A【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零是解题的关键3、A【分析】根据单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项可进行排除选项【详解】解:A、,正确,故符合题意;B、,原计算错误,故不符合题意;C、,原计算错误,故不符合题意;D、,原计算错误,故不符合题意;故选A【点睛】本题主要考查单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项,熟练掌握单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项是解题的关键4、C【分析】把,的值同时扩大2倍后,运用分式的基本性质进行化简,即可得出结论【详解】解:A选项,把,的值同时扩大2倍后得:,值发生了变化,故该选项不符合题意;B选项,把,的值同时扩大2倍后得:,值缩小了一半,故该选项不符合题意;C选项,把,的值同时扩大2倍后得:,值不变,故该选项符合题意;D选项,把,的值同时扩大2倍后得:,值变成了原来的2倍,故该选项不符合题意;故选:C【点睛】本题考查了分式的基本性质,掌握分式的基本性质是解题的关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变5、D【分析】根据科学记数法:把一个大于0的数表示成的形式(其中,n是整数),由此问题可求解【详解】解:把米用科学记数法表示为米;故选D【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000066×108,故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、B【分析】把的小数点向左移3位即可【详解】解:故选B【点睛】本题考查了还原科学记数法表示的小数,熟练掌握科学记数法的意义是解题的关键8、D【分析】由题意可得且,根据平方根的性质求解即可【详解】解:由题意可得且,解得当时,不符合题意,舍去;当时,符合题意;所以,故选D【点睛】此题考查了分式的有关性质,涉及了求平方根,熟练掌握分式的有关性质是解题的关键9、D【分析】根据零指数幂、负指数幂以及乘方的运算求得,比较即可【详解】解:,故选D【点睛】此题考查了零指数幂、负指数幂以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出的值10、C【分析】根据分式有意义的条件分析即可【详解】有意义,故选C【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键二、填空题1、4【分析】设中国需要x天,则美国需要(x+4)天,结合等量关系“中国2天的工作量+美国x天的工作量=工作总量”列出方程即可;【详解】解:设中国需要x天,由题意可得:, 解得x=4经检验:x=4是方程的解,且符合题意,故答案为:4【点睛】本题考查分式方程的应用解决本题的关键是得到工作量11的等量关系;易错点是得到甲乙两队各自的工作时间2、64【分析】根据10x=20,10y=50-1,可求出x-y=3,再将4x÷22y转化为4x-y代入计算即可【详解】解:10x=20,10y=50-1,10x÷10y=20÷50-1,即10x-y=1000=103,x-y=3,4x÷22y=4x-y=43=64,故答案为:64【点睛】本题考查了同底数幂的除法,幂的乘方与积的乘方以及负整数指数幂,掌握同底数幂的除法,幂的乘方与积的乘方以及负整数指数幂的运算法则是正确计算的前提3、【分析】根据分式的性质,将等式中的分式化为整式,再用,表示即可【详解】,即,故答案为:【点睛】本题考查了分式的性质,等式的性质,掌握分式的性质是解题的关键4、【分析】根据负整指数幂,零次幂进行计算即可【详解】故答案为:1【点睛】本题考查了负整指数幂,零次幂,掌握负整指数幂,零次幂的计算是解题的关键5、=【分析】本题只需要先对M、N分别进行化简,再把代入即可比较M、N的大小【详解】解:,MN,故答案为:【点睛】本题考查了分式的混合运算,在解题时要注意先对分式进行化简,再代入求值即可三、解答题1、【分析】先把各个分式的分子、分母因式分解,根据分式的除法法则、约分法则计算即可【详解】解:原式【点睛】本题考查了分式的化简,熟练掌握约分,灵活进行因式分解是解题的关键2、【分析】由,可得,再把化为,再代入求值可得答案.【详解】解:,则,【点睛】本题考查的是负整数指数幂的含义,同底数幂的逆运算,幂的乘方的逆运算,熟练运用幂的运算法则进行运算是解题的关键.3、(1)6;(2)2x232;(3)4x5【分析】(1)第一项根据零指数幂计算,第二项根据积的乘方逆运算计算;(2)先根据平方差公式计算,再去括号即可;(3)先根据完全平方公式、平方差公式计算,再合并同类项;【详解】解:(1)原式1(0.2)2009×(5)2009×(5)1(0.2×5)2009×5156;(2)原式2(x216)2x232;(3)原式x24x4x214x5【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式,完全平方公式,积的乘方法则是解答本题的关键4、(1)5.125;(2);(3)【分析】(1)根据负整数指数幂法则,零指数幂法则以及幂的乘方法则的逆用及积的乘方法则的逆用逐步计算即可;(2)根据积的乘方法则及单项式乘单项式法则、单项式除以单项式法则逐步计算即可;(3)先将原式变形为,再利用平方差公式及完全平方公式计算即可【详解】解:(1)原式;(2)原式;(3)原式【点睛】本题考查了实数的混合运算及整式的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键5、(1),;(2),(3);(4)【分析】(1)根据已知4个等式对比发现规律可得;(2)根据已知等式列出算式即可;(3)根据已知等式的规律列出算式,然后计算化简后的算式即为所求;(4)根据已知等式的规律列出算式,然后裂项相消,计算化简后的算式即为所求【详解】(1)观察得a5=;(2)观察得an=;(3);(4);【点睛】本题考查了分式的四则运算及数式的规律探究来理解裂项相消法,考验学生的阅读理解能力