2022年强化训练北师大版七年级数学下册第六章概率初步专项测试练习题(精选).docx
-
资源ID:30741221
资源大小:243.87KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年强化训练北师大版七年级数学下册第六章概率初步专项测试练习题(精选).docx
北师大版七年级数学下册第六章概率初步专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().A B C D12、一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有4个,若从袋中任意取出一个球,取出黄色球的概率为,则黑色球的个数为()A3B4C5D63、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B任意写一个整数,它能被2整除C掷一枚正六面体的骰子,出现1点朝上D先后两次掷一枚质地均匀的硬币,两次都出现反面4、抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为( )A800B1000C1200D14005、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )ABCD6、小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为()ABCD7、下列说法正确的是()A“明天下雨的概率为99%”,则明天一定会下雨B“367人中至少有2人生日相同”是随机事件C抛掷10次硬币,7次正面朝上,则抛掷硬币正面朝上的概率为0.7D“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件8、下列事件中,是必然事件的是()A如果a2b2,那么abB车辆随机到达一个路口,遇到红灯C2021年有366天D13个人中至少有两个人生肖相同9、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD10、一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是_2、箱子里有4个红球和个白球,这些球除颜色外均差别,小李从中摸到一个白球的概率是,则_3、在一个不透明的笔袋中装有两支黑色笔和一支红色笔,除颜色不同外其他都相同,随机从中摸出一支黑色笔的概率是_4、从如图所示的四张扑克牌中任取一张,牌面数字是3的倍数的概率是_5、在不透明的箱子中装有10个形状质地大小相同的小球,其中编号依次为1,2,3,10,现从箱子中随机摸取一个小球,则摸得的是小球编号为质数的概率是 _三、解答题(5小题,每小题10分,共计50分)1、为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)这次抽样调查的总人数为_人;(2)若该校有1400名学生,估计选择参加舞蹈的有多少人?(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率2、某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数51015202530每回进球次数386161718相应频率 (1)请将数据表补充完整(2)画出该同学进球次数的频率分布折线图(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)3、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”掷小正方体后,观察朝上一面的数字(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?4、国庆期间,某电影院上映了长津湖我和我父辈五个扑水的少年三部电影甲、乙两同学从中选取一部电影观看(1)甲同学选取电影长津湖观看的概率是_;(2)求甲、乙两同学选取同一部电影的概率5、现有一个不透明的袋子,有形状大小都相同的红、黄、白三种颜色的小球若干请你从三种颜色的小球中,共选取10个小球放入袋中请按照下列要求设计摸球游戏要求:摸到红球和黄球的概率相等,并且都小于摸到白球的概率请你列出所有选取红、黄、白小球数量的方案,用概率说明理由-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=故选:C【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、C【分析】根据取到黄球的概率求出黄球个数,总数减去红黄球个数,即可得到黑球个数【详解】根据题意可求得黄球个数为:15×=6个,所以黑球个数为:15-6-4=5个,故选:C【点睛】本题考查的是概率计算相关知识,熟记概率公式是解答此题的关键3、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率0.33,符合题意; B、任意写一个整数,它能2被整除的概率为,不符合题意; C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意; 故选:A【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比4、B【分析】由抛掷一枚硬币正面向上的可能性约为求解可得【详解】解:抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为次,故选B【点睛】本题主要考查了事件的可能性,解题的关键在于能够理解抛掷一枚硬币正面向上的可能性约为5、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:故选:B【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)6、A【分析】根据概率公式直接计算即可,总共6个面,点数为2的一面出现的情况只有1种, 可得点数为2的一面朝上的概率【详解】根据题意,小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为故选A【点睛】本题考查了简单概率,理解题意是解题的关键7、D【分析】根据概率、随机事件和必然事件的定义逐项判断即可得【详解】解:A、“明天下雨的概率为99%”,则明天不一定会下雨,原说法错误;B、“367人中至少有2人生日相同”是必然事件,则原说法错误;C、抛掷硬币要么正面朝上,要么正面朝下,则抛掷硬币正面朝上的概率为,则原说法错误;D、“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件,说法正确;故选:D【点睛】本题考查了概率、随机事件和必然事件,掌握理解各概念是解题关键8、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.9、C【分析】用3的倍数的个数除以数的总数即为所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比10、D【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数即可求解【详解】解:口袋中有2个红球,3个白球,P(红球)故选D【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),掌握随机事件概率的求法是解题关键二、填空题1、【分析】设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,求出活到25岁的数量与活到20岁的数量的比值,即可求解【详解】解:设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,现年20岁的这种动物活到25岁的概率是 故答案为:【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键2、6【分析】根据白球的概率结合概率公式列出关于的方程,求出的值即可【详解】解:摸到一个白球的概率是,解得经检验,是原方程的根故答案为:6【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)3、【分析】让黑色笔的支数除以所有笔的支数总和即可求得概率【详解】解:有两支黑色笔和一支红色笔,随机从中摸出一支黑色笔的概率是: 故答案为: 【点睛】此题主要考查概率的意义及求法,熟练掌握概率等于所求情况数与总情况数之比是解题的关键4、【分析】根据概率公式直接计算即可解答【详解】解:从中随机抽出一张牌,牌面所有可能出现的结果由4种,且它们出现的可能性相等,其中出现3的倍数的情况有1种, P(牌面是3的倍数)故答案为:【点睛】此题考查了概率公式的运用,解题的关键是确定整个事件所有可能的结果,难度不大5、【分析】根据题意,先求得质数的个数,进而根据概率公式计算即可【详解】1,2,3,10,中有共4个质数,摸得的是小球编号为质数的概率,故答案为:(或0.4)【点睛】本题考查了概率公式求概率,求得质数的个数是解题的关键三、解答题1、(1)200;(2)420人;(3)【分析】(1)由参加唱歌的人数和所占百分比求出这次抽样调查的总人数,即可解决问题;(2)由该校学生人数乘以参加舞蹈的学生所占的比例即可;(3)画树状图,共有12种等可能的结果,恰为一男一女的结果有8种,再由概率公式求解即可【详解】解:(1)这次抽样调查的总人数为:36÷18%200(人),故答案为:200;(2)样本中参加舞蹈的学生人数为:20036802460(人),1400×420(人),即估计该校选择参加舞蹈有420人;(3)画树状图如图:共有12种等可能的结果,恰为一男一女的结果有8种,恰为一男一女的概率为【点睛】本题考查的是用列表法或画树状图法求概率的知识以及条形统计图和扇形统计图列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率所求情况数与总情况数之比2、(1)0.6;0.8;0.4;0.8;0.68;0.6;(2)见解析;(3)0.65【分析】(1)根据频率计算方法:频率每回进球次数÷每回的投球次数,即可求解;(2)利用描点法画图即可;(3)利用样本估计总体即可求解【详解】(1)3÷5=0.6;8÷10=0.8;6÷15=0.4;16÷20=0.8;17÷25=0.68;18÷30=0.6;故将数据表补充如下:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数51015202530每回进球次数386161718相应频率0.6 0.80.40.80.680.6(2)如图:进球次数的频率分布折线图如下: (3)0.65.答:估计这个概率是0.65【点睛】此题主要考查频率与概率、折线统计图的画法,用到的知识点为:频率所求情况数与总情况数之比;3、(1)出现“5”的概率是;(2)出现“6”的概率是0;(3)出现奇数的概率是【分析】(1)根据出现的机会有两次,再利用概率公式计算即可;(2)根据出现的机会没有,可得出现是不可能事件,从而可得其概率;(3)根据出现奇数的机会有四次,再利用概率公式计算即可.【详解】解:(1)因为出现的机会有两次,所以出现“5”的概率是:,(2)因为出现的机会没有,所以出现“6”的概率是:,(3)因为出现奇数的机会有四次,所以出现奇数的概率是【点睛】本题考查的是概率的含义与计算,掌握概率的计算方法是解题的关键.4、(1)(2)【分析】(1)根据简单概率公式即可求解;(2)根据题意画出树状图,故可根据概率公式求解【详解】(1)依题意可得甲同学选取电影长津湖观看的概率是故答案为:;(2)依题意可做树状图如下:故甲、乙两同学选取同一部电影的概率为【点睛】此题主要考查概率的求解,解题的关键是根据题意画出树状图5、见解析【分析】红球和黄球的概率相等,可得红球和黄球的数量一样,红球和黄球的概率小于摸到白球的概率,可得红球和黄球的数量小于白球,从黄球和红球数量都为1开始讨论即可【详解】解:方案1:选取红、黄球各1个,白球8个此时,摸到红球摸到黄球,摸到白球显然摸到红球摸到黄球摸到白球方案2:选取红、黄球各2个,白球6个此时,摸到红球摸到黄球,摸到白球显然摸到红球摸到黄球摸到白球方案3:选取红、黄球各3个,白球4个此时,摸到红球摸到黄球,摸到白球显然摸到红球摸到黄球摸到白球【点睛】此题考查了概率的应用,根据题意找到黄球、红球、白球的数量关系是解题的关键