2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(含解析).docx
-
资源ID:30741689
资源大小:314.04KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(含解析).docx
沪教版(上海)七年级数学第二学期第十二章实数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个实数中,最大的数是()A0B2C2D2、如果一个正数a的两个不同平方根是2x2和63x,则这个正数a的值为( )A4B6C12D363、计算2130( )AB1C1D4、估计的值应该在( )A1和2之间B2和3之间C3和4之间D4和5之间5、下列说法中错误的是()A9的算术平方根是3B的平方根是C27的立方根为D平方根等于±1的数是16、一个正方体的体积是5m3,则这个正方体的棱长是()AmBmC25mD125m7、下列判断:10的平方根是±;与互为相反数;0.1的算术平方根是0.01;()3a;±a2其中正确的有()A1个B2个C3个D4个8、在实数,0.1010010001(相邻两个1中间依次多1个0)中,无理数有( )A2个B3个C4个D5个9、16的平方根是()A±8B8C4D±410、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,且a,b是两个连续的整数,则的值为_2、的算术平方根是_,的立方根是_,的倒数是_3、0.064的立方根是_4、计算_;5、用“*”定义一种新运算:对于任意有理数a和b,规定a*bab22a,则3*(2)_三、解答题(10小题,每小题5分,共计50分)1、已知x2的平方根是±2,x2y7的立方根是3,求3xy的算术平方根2、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b9)20,c1(1)a ,b ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|xa|xb|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?3、求下列各式中的x:(1);(2)4、解方程:(1)x225; (2)8(x1)31255、计算 6、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在4×4方格中阴影正方形的边长为a写出边长a的值请仿照(1)中的作图在数轴上表示实数a+17、已知x,y满足,求x、y的值8、解方程,求x的值(1) (2)9、计算:(1)(2)()210、阅读下列材料:根据你观察到的规律,解决下列问题:(1)写出组中的第5个等式;(2)写出组的第n个等式,并证明;(3)计算:-参考答案-一、单选题1、C【分析】先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可【详解】解:正数,负数,排除,最大的数是2,故选:【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键2、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x2+63x=0,解方程即可【详解】解:一个正数a的两个不同平方根是2x2和63x,2x2+63x=0,解得:x=4,2x2=2×4-2=8-2=6,正数a=62=36故选择D【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键3、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可【详解】解:原式1故选:D【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键4、C【分析】根据252936估算出的大小,然后可求得的范围【详解】解:252936,即565、C【分析】根据平方根,算术平方根,立方根的性质,即可求解【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键6、B【分析】根据正方体的体积公式:Va3,把数据代入公式解答【详解】解:××5(立方米),答:这个正方体的棱长是米,故选:B【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟记公式7、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是±,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根8、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,0.1010010001(相邻两个1中间依次多1个0)是无理数,共个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数9、D【分析】根据平方根可直接进行求解【详解】解:(±4)216,16的平方根是±4故选:D【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键10、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键二、填空题1、7【分析】先判断出的取值范围,确定a和b的值,即可求解【详解】解:,a=3,b=4,a+b=7故答案为:7【点睛】本题考查了无理数的估算,正确估算出的取值范围是解题关键2、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可【详解】解:=81的算术平方根是9,=的立方根是,的倒数是,故答案为:-9,【点睛】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力3、0.4【分析】根据立方根的定义直接求解即可【详解】解:,0.064的立方根是0.4故答案为:0.4【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义4、-3【分析】根据立方根、算术平方根可直接进行求解【详解】解:原式=;故答案为-3【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键5、18【分析】根据a*bab22a,可得:3*(2)3×(2)22×3,据此求出算式的值是多少即可【详解】解:a*bab22a,3*(2),3×(2)22×3,3×46,126,18故答案为:18【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算三、解答题1、5【分析】根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案【详解】解:x2的平方根是±2,x24,解得:x6,x2y7的立方根是3,62×y727,解得:y7,3xy25,3xy的算术平方根是5【点睛】本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键2、(1)3,9;(2)9,12;(3)秒或秒【分析】(1)由|a+3|+(b9)20,根据非负数的性质得|a+3|0,(b9)20,即可求出a3、b9;(2)由(1)得a3、b9,则代数式|xa|xb|即代数式|x+3|x9|,按x3、3x9及x9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可【详解】解:(1)|a+3|0,(b9)20,且|a+3|+(b9)20,|a+3|0,(b9)20,a3,b9,故答案为:3,9(2)a3,b9,代数式|xa|xb|即代数式|x+3|x9|,当x3时,|x+3|x9|(x+3)(9x)12;当3x9时,|x+3|x9|x+3(9x)2x6,122x612,12|x+3|x9|12;当x9时,|x+3|x9|x+3(x9)12,综上所述,|x+3|x9|的最大值为12,故答案为:9,12(3)点C表示的数是1,点B表示的数是9,B、C两点之间的距离是918,当点Q与点C重合时,则2t8,解得t4,当0t4时,如图1,点P表示的数是3t,点Q表示的数是92t,根据题意得92t(3t)2×2t,解得t;当4t8时,如图2,点P表示的数仍是3t,1+(2t8)2t7,点Q表示的数是2t7,根据题意得2t7(3t)2(162t),解得t,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键3、(1);(2)【分析】(1)根据等式的性质和平方根的意义进行计算即可;(2)根据等式的性质和立方根的意义进行计算即可【详解】解:(1),两边都除以4得,所以,;(2),两边都减1得,所以,解得,【点睛】本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键4、(1);(2)【分析】(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可;【详解】解:(1)x225x±5(2)x1,x【点睛】本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键5、【分析】直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案【详解】解:=【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键6、(1),1+;(2);见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,由题意得:点表示的实数为:,故答案为:,;(2)阴影部分正方形面积为:,求其算术平方根可得:,如图所示:点表示的数即为【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键7、x=5;y=2【分析】根据非负数的性质可得关于x、y的方程组,求解可得其值;【详解】解:由题意可得,联立得 ,解方程组得:,x、y的值分别为5、2【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键8、(1)或 ;(2)x【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x1可做一个整体求出其立方根,进而求出x的值【详解】解:(1), ,或 ;(2)8(x1)327,(x1)3,x1,x【点睛】本题考查了平方根、立方根熟练掌握平方根、立方根的定义和性质是解题的关键9、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算【详解】(1)原式,;(2)原式,【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键10、(1);(2),证明见解析;(3)【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可(1)解:,第5个等式为;(2)解:,第n个等式为,证明:右边=,左边=,右边=左边,;(3)解:=,=,=,=【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键