2022年沪科版九年级数学下册第26章概率初步必考点解析试卷(精选含答案).docx
-
资源ID:30744865
资源大小:311.93KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年沪科版九年级数学下册第26章概率初步必考点解析试卷(精选含答案).docx
沪科版九年级数学下册第26章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )A24B18C16D62、下列说法不正确的是()A不可能事件发生的概率是0B概率很小的事件不可能发生C必然事件发生的概率是1D随机事件发生的概率介于0和1之间3、下列说法正确的是()A掷一枚质地均匀的骰子,掷得的点数为3的概率是B一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D在同一年出生的400个同学中至少会有2个同学的生日相同4、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同则在下列说法中正确的是( )A无放回的从中连续摸出三个红球是随机事件B从中摸出一个棕色球是随机事件C无放回的从中连续摸出两个白球是不可能事件D从中摸出一个红色球是必然事件5、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )ABCD16、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同的出入口进出的概率是()ABCD7、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A0.560B0.580C0.600D0.6208、下列事件中,是必然事件的是( )A刚到车站,恰好有车进站B在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C打开九年级上册数学教材,恰好是概率初步的内容D任意画一个三角形,其外角和是360°9、下列说法正确的是( )A“买中奖率为的奖券10张,中奖”是必然事件B“汽车累积行驶,出现一次故障”是随机事件C襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D若两组数据的平均数相同,则方差大的更稳定10、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6下列判断正确的是( )A(1)(2)都是随机事件B(1)(2)都是必然事件C(1)是必然事件,(2)是随机事件D(1)是随机事件,(2)是必然事件第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则它是黑球的概率是_2、第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,小健通过统计数据了解到:从2002年到2018年的五届冬奥会上,中国队每届比赛均有金牌入账,共斩获了13枚金牌,于是,小健对同学们说:“2022年北京冬奥会中国队获得2枚以上金牌的可能性大小是100%”你认为小健的说法_(填“合理”或“不合理”)理由是_3、从2,1,1,0四个数中,随机抽取两个数相乘,积为0的概率是 _4、从2,1,1,3,5五个数中随机选取一个数作为二次函数yax2+x3中a的值,则二次函数图象开口向上的概率是 _5、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_三、解答题(5小题,每小题10分,共计50分)1、如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字请用画树状图或列表的方法,求这两个数字之和为偶数的概率2、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率(注:当指针恰好指在分界线上时,无效重转)3、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解并将结果绘制成两幅不完整的统计图请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有 人;(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A”等级的学生约有多少人?(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率4、林肇路某路口南北方向红绿灯的设置时间为:红灯57s,绿灯60s,黄灯3s,小明的爸爸由北往南开车随机地行驶到该路口(1)他遇到红灯、绿灯、黄灯的概率各是多少?(2)我国新的交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候,问小明的爸爸开车随机到该路口,按照交通信号灯直行停车等候的概率是多少?5、小明每天骑自行车上学,都要通过安装有红、绿灯的4个十字路口假设每个路口红灯和绿灯亮的时间相同(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 (请直接写出答案)-参考答案-一、单选题1、A【分析】根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可【详解】解:摸到红色球、黑色球的频率稳定在0.15和0.45,摸到白球的频率为1-0.15-0.45=0.40,口袋中白色球的个数可能是60×0.40=24个故选A【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率根据频率之和为1计算出摸到白球的频率是解答本题的关键2、B【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为03、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D【点睛】本题考察了概率解题的关键与难点在于了解概率概念与求解4、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确故选A【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键5、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,共有3个,抽到的图案是中心对称图形的概率是故选C【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键6、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,P小张从不同的出入口进出的结果数,故选D【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率7、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.8、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念9、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键10、D【分析】必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.【详解】解:事件(1):购买1张福利彩票,中奖,是随机事件,事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,故选D【点睛】本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键2、不合理 获得金牌是随机事件 【分析】随机事件是指可能发生也可能不发生的事件,根据随机事件的定义进行解答即可【详解】解:小健的说法不合理,因为获得金牌是随机事件,故答案为:不合理,获得金牌是随机事件【点睛】本题考查了随机事件的应用,能理解随机事件的定义是解此题的关键3、【分析】画树状图,共有12种等可能的结果,积为0的结果有6种,再由概率公式求解即可【详解】解:画树状图如下:共有12种等可能的结果,积为0的结果有6种,积为0的概率为,故答案为:【点睛】此题考查的是用树状图法求概率画树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比4、【分析】二次函数图象开口向上得出a0,从所列5个数中找到a0的个数,再根据概率公式求解可得【详解】解:从2,1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,该二次函数图象开口向上的概率为,故答案为:【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数5、【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】解:共摸球4000次,其中800次摸到黑球,从中随机摸出一个球是黑球的概率为,故答案为:【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比三、解答题1、见解析,【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可【详解】解:画树状图如下:由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果,(两个数字之和是偶数)【点睛】本题考查了利用列表法与树状图法求概率,根据列表法和树状图法展示所有可能的结果,再从中选出符合条件的结果是解题关键2、(1);(2)见解析,【分析】(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得【详解】解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比3、(1)40;(2)72°,见解析;(3)225人;(4)【分析】(1)C组:了解很少这个小组有人,占比由可得答案;(2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;(3)由乘以A组的占比即可得到答案;(4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案【详解】解:(1) C组:了解很少这个小组有人,占比 接受问卷调查的学生共有人,故答案为: ;(2)组占比: 扇形统计图中“D”等级的扇形的圆心角的度数为:,组人数为: 所以补全条形统计图如下:(3)全校约有学生1500人,估计“A”等级的学生约有:(人);(4)列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,所以刚好抽到甲和丁同学的概率是:【点睛】本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键4、(1)他遇到红灯、绿灯、黄灯的概率各是、;(2)【分析】(1)根据红灯、绿灯、黄灯的时间求出总时间,再利用概率公式即可得;(2)将遇到红灯和黄灯的概率相加即可得【详解】解:(1)红灯、绿灯、黄灯的总时间为,则他遇到红灯的概率是,遇到绿灯的概率是,遇到黄灯的概率是,答:他遇到红灯、绿灯、黄灯的概率各是、;(2),答:按照交通信号灯直行停车等候的概率是【点睛】本题考查了简单事件的概率,熟练掌握概率公式是解题关键5、(1),见解析(2)【解析】(1)列表如下第一个十字路口第二个红灯绿灯红灯红红红绿绿灯绿红绿绿共有4种等可能情形,满足条件的有1种通过前2个十字路口时都是绿灯的概率(2)画树状图如图,表示红灯,表示绿灯,共有16种等可能情形,满足条件的有11种小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为故答案为:【点睛】本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键