中考特训人教版初中数学七年级下册第九章不等式与不等式组专项测评试题(含答案解析).docx
-
资源ID:30745339
资源大小:219.11KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中考特训人教版初中数学七年级下册第九章不等式与不等式组专项测评试题(含答案解析).docx
初中数学七年级下册第九章不等式与不等式组专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列判断正确的是( )A由,得B由,得C由,得D由,得2、若不等式(a+1)x>2的解集为x<,则a的取值范围是( )Aa<1Ba<-1Ca>1Da>-13、如果ab,下列各式中正确的是( )A2021a2021bB2021a2021bCa2021b2021D2021a2021b4、若成立,则下列不等式成立的是( )ABCD5、不等式的最大整数解为( )A2B3C4D56、下列说法中,正确的是( )Ax3是不等式2x1的解Bx3是不等式2x1的唯一解Cx3不是不等式2x1的解Dx3是不等式2x1的解集7、如图,数轴上表示的解集是()A3x2B3x2Cx3Dx28、已知关于x的不等式组的解集中任意一个x的值均不在1x3的范围内,则a的取值范围是()A5a6Ba6或a5C5a6Da6或a59、下列不等式组,无解的是( )ABCD10、下列说法正确的是( )A若ab,则3a2bB若ab,则ac2bc2C若2a2b,则abD若ac2bc2,则ab二、填空题(5小题,每小题4分,共计20分)1、有人问一位教师所教班级有多少人,教师说:“一半学生在学数学,四分之一学生在学音乐,七分之一学生在读外语,还剩下不足六位学生在操场踢足球”,则这个班有_名学生2、已知m为十位数字是8的三位数,且m-40n=24(n为自然数),则m的可能取值有_种3、已知关于x的不等式组无解,则a的取值范围是_4、 “x的3倍与2的和不大于5”用不等式表示为 _5、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_三、解答题(5小题,每小题10分,共计50分)1、解不等式(组): (1) ; (2)2、已知xy,比较下列各对数的大小(1)8x-3和8y-3; (2)和; (3) x-2和y-13、某商店对A型号笔记本电脑举行促销活动,有两种优惠方案可供选择方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售已知A型号笔记本电脑的原售价是5000元/台,某公司一次性从该商店购买A型号笔记本电脑x台(1)若方案二比方案一更便宜,根据题意列出关于x的不等式(2)若公司买12台笔记本,你会选择哪个方案?请说明理由4、对于平面直角坐标系中任一点(a,b),规定三种变换如下:A(a,b)(a,b)如:A(7,3)(7,3);B(a,b)(b,a)如:B(7,3)(3,7);C(a,b)(a,b)如:C(7,3)(7,3);例如:A(B(2,3)A(3,2)(3,2)规定坐标的部分规则与运算如下:若ab,且cd,则(a,c)(b,d);反之若(a,c)(b,d),则ab,且cd(a,c)+(b,d)(a+b,c+d);(a,c)(b,d)(ab,cd)例如:A(B(2,3)+C(B(2,3)A(3,2)+C(3,2)(3,2)+(3,2)(6,0)请回答下列问题:(1)化简:A(C(5,3) (填写坐标);(2)化简:C(A(3,2)B(C(1,2) (填写坐标);(3)若A(B(2x,kx)C(A(1+y,2)C(B(ky1,1)+A(C(y,x),且k为整数,点P(x,y)在第四象限,求满足条件的k的所有可能取值5、解下列不等式(组),并把解集表示在数轴上(1);(2)-参考答案-一、单选题1、D【分析】根据一元一次不等式的解法逐项判断即可得【详解】解:A、由,得,则此项错误;B、由,得,则此项错误;C、由,得,则此项错误;D、由,得,则此项正确;故选:D【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键2、B【分析】根据不等式的性质可得,由此求出的取值范围【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,故选:B【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变3、C【分析】根据不等式的性质即可求出答案【详解】解:A、ab,2021a2021b,故A错误;B、ab,2021a2021b,故B错误;C、ab,a2021b2021,故C正确;D、ab,2021a2021b,故D错误;故选:D【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型4、C【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答【详解】解:A、不等式ab两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式ab两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式ab两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为0,当=0时,不等式ab两边都乘,不等式不成立,不符合题意;故选:C【点睛】本题考查了不等式的基本性质不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变5、B【分析】求出不等式的解集,然后找出其中最大的整数即可【详解】解:,则符合条件的最大整数为:,故选:B【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键6、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立【详解】解:A、当x3时,2×31,成立,故A符合题意;B、当x3时,2×31成立,但不是唯一解,例如x4也是不等式的解,故B不符合题意;C、当x3时,2×31成立,是不等式的解,故C不符合题意;D、当x3时,2×31成立,是不等式的解,但不是不等式的解集,其解集为:x,故D不符合题意;故选:A【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题7、A【分析】根据求不等式组的解集的表示方法,可得答案【详解】解:由图可得,x3且x2在数轴上表示的解集是3x2,故选A【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解8、B【分析】根据解不等式组,可得不等式组的解集,根据不等式组的解集是与1x3的关系,可得答案【详解】解:不等式组,得a3xa+4,由不等式组的解集中任意一个x的值均不在1x3的范围内,得a+41或a33,解得a5或a6,故选:B【点睛】本题考查了不等式的解集,利用解集中任意一个x的值均不在1x3的范围内得出不等式是解题关键9、D【分析】根据不等式组的解集的求解方法进行求解即可【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键10、D【分析】利用不等式的性质,即可求解【详解】解:A、若ab,则3a3b,故本选项错误,不符合题意; B、若ab,当c0时,则ac2bc2,故本选项错误,不符合题意; C、若2a2b,则ab,故本选项错误,不符合题意; D、若ac2bc2,则ab,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键二、填空题1、28【分析】根据题意可以列出相应的不等式,又根据一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,可知该班学生一定是2、4、7的倍数,从而可以解答本题【详解】解:设这个班有x人,由题意可得:,解得,x56,又一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,该班学生一定是2、4、7的倍数,x=28,故答案为:28【点睛】本题考查一元一次不等式的应用,解答此类问题的关键是列出相应的不等式,注意要联系实际情况和题目中的要求2、5【分析】由题意可得,进而得到,将n代入原式,分析出m的十位数字以0,4,8,2,6这五个数依次重复下去,即可解答【详解】解:m为十位数字是8的三位数,且(n为自然数),即m=2440n,解得:, ,时,十位数为0,时,十位数为4,十位数为8,十位数为2,十位数为6,十位数为0,十位数为4,十位数为8,十位数为2,十位数为6,十位数为8,可以发现规律,m的十位数字以0,4,8,2,6这五个数依次重复下去,故在,9,14,19,24时m为十位数字是8的三位数,m的取值可能有5种,故答案为:5【点睛】本题考查数字规律,不等式的性质,得出m的十位数字以0,4,8,2,6这五个数依次重复下去的规律是解题关键3、【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可【详解】解:由得:由得:不等式组无解故答案为【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找4、3x+25【分析】不大于就是小于等于的意思,根据x的3倍与2的和不大于5,可列出不等式【详解】解:由题意得:3x+25,故答案为:3x+25【点睛】本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式5、5或6【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:又为正整数,或6故答案为:5或6【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解三、解答题1、(1)x>1.5;(2)-1x<3【解析】【分析】(1)根据移项、合并同类项、系数化为1的步骤可得x的范围;(2)首先求出两个不等式的解集,然后取其公共部分即为不等式组的解集【详解】(1)解:5x-2>3x+1,移项得:5x-3x>1+2,合并同类项得:2x>3,系数化为1得:x>1.5;(2)解: 解不等式2x+53(x+2),得x-1, 解不等式2x-<1,得x<3, 不等式组的解集为-1x<3【点睛】此题考查了解一元一次不等式,解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式,解一元一次不等式组的方法2、(1)8x-38y-3;(2);(3)x-2y-1【解析】【分析】(1)根据不等式的基本性质:不等式两边同时乘以一个正数,不等号不变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(2)根据不等式的基本性质:不等式两边同时乘以一个负数,不等号变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(3)根据不等式的基本性质:不等式两边同时加上或减去一个数,不等号方向不变,即可得【详解】解:(1) , , ;(2) , , ;(3) , ,而, 【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的各个性质是解题关键3、(1)5000×5+5000×80%(x5)5000×90%x;(2)方案二,理由见解析【解析】【分析】(1)根据方案二比方案一更便宜,结合题意列出关于x的不等式即可;(2)根据公司买12台笔记本,分别计算出方案一和方案二所需钱数比较即可【详解】解:(1)根据题意可知,按照方案一购买需要 ()元;按照方案二购买需要元故可列不等式为:(2)选择方案二,理由:方案一购买12台需要:(元),方案二购买12台需要:(元),5400053000,选择方案二【点睛】本题考查了由实际问题抽象出一元一次不等式,解题的关键是:(1)找准不等量关系,正确列出一元一次不等式;(2)根据优惠方案,列式计算4、(1)(5,3);(2)(5,1);(3)k2,1,0,1【解析】【分析】(1)根据坐标的变换规则,求解即可;(2)根据坐标的变换规则和运算规则,求解即可;(3)根据坐标的变换规则和运算规则,对式子进行化简,得到等式,根据点的坐标性质,列不等式求解即可【详解】解:(1)A(C (5,3)A(5,3)(5,3);故答案为:(5,3);(2)C(A(3,2)B(C(1,2)C(3,2)B(1,2)(3,2)(2,1)(5,1);故答案为:(5,1);(3)A(B(2x,kx)C(A(1+y,2)C(B(ky1,1)+A(C(y,x),A(kx,2x)C(1y,2)C(1,ky1)+A(y,x),(kx,2x)(1+y,2)(1,ky+1)+(y,x),(kx1y,2x2)(1+y,ky+1x),(a,c)(b,d)时,ab且cd,kx1y1+y,2x2ky+1x,(k2+6)x2k+6,(k2+6)y3k6,坐标P(x,y)在第四象限,x0,y0,2k+60,3k60,3k2,k是整数,k2,1,0,1【点睛】此题考查了坐标的新定义运算,涉及了直角坐标系的性质,一元一次不等式的求解,解题的关键是理解题意,掌握坐标变换和运算规则,正确求解5、(1)x1,见解析;(2)3x1,见解析【解析】【分析】(1)按照去分母,去括号,移项,合并,系数化为1的步骤解不等式,然后在数轴上表示出不等式的解集即可;(2)先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示不等式组的解集即可【详解】解:(1),去分母得:,去括号得: 4x+29x9+6,移项得:4x9x9+62,合并得:5x5,系数化为1得:x1,在数轴上表示为:(2)解不等式5x42+7x,得:x3,解不等式x,得:x1,则不等式组的解集为3x1,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,并在数轴上表示不等式和不等式组的解集,解题的关键在于能够熟练掌握解一元一次不等式的方法