2022年精品解析京改版八年级数学下册第十六章一元二次方程综合练习试题(无超纲).docx
-
资源ID:30745721
资源大小:212.76KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析京改版八年级数学下册第十六章一元二次方程综合练习试题(无超纲).docx
京改版八年级数学下册第十六章一元二次方程综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程x2+2x=1,变形后的结果正确的是( )A(x+1)2=-1B(x+1)2=0C(x+1)2=1D(x+1)2=22、某中学组织九年级学生篮球比赛,以班为单位,每两班之间都比赛一场,总共安排15场比赛,则共有多少个班级参赛( )A6B5C4D33、方程2x2-3x=2的一次项系数和常数项分别是( )A3和2B-3和2C3和-2D-3和-24、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积设较长一段的长为x m,依题意,可列方程为( )ABCD5、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有()支队伍参赛A4B5C6D76、下列方程中是一元二次方程的是( )Ay21B0CD7、某商品售价准备进行两次下调,如果每次降价的百分率都是x,经过两次降价后售价由298元降到了268元,根据题意可列方程为( )ABCD8、不解方程,判别方程的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法确定9、已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )A3BC3或D5或10、若方程的一个根为,则的值是( )A7BC4D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程x2m0的一个解为3,则m的值为_2、关于x的一元二次方程的两实数根,满足,则m的值是_3、一元二次方程3x232x的根的判别式的值为 _4、一元二次方程的二次项系数、一次项系数及常数项之和为_5、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染_人三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解方程(1)(2)2、(1)解一元二次方程:x26x+9(52x)2;(2)求证:无论m取何值时,方程(x3)(x2)m20总有两个不相等的实数根3、阅读材料:材料1 若一元二次方程ax2+bx+c0(a0)的两个根为x1,x2则x1+x2,x1*x2材料2 已知实数m,n满足m2m10,n2n10,且mn,求的值解:由题知m,n是方程x2x10的两个不相等的实数根,根据材料1得m+n1,mn1,所以根据上述材料解决以下问题:(1)材料理解:一元二次方程5x2+10x10的两个根为x1,x2,则x1+x2 ,x1x2 (2)类比探究:已知实数m,n满足7m27m10,7n27n10,且mn,求m2n+mn2的值:4、(1)计算:(2)解方程:5、某种服装,平均每天可以销售20件,每件赢利44元在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件(1)如果每件降价x元,则每天可以销售 件服装;(用含x的代数式表示)(2)如果商家每天要获得利润1600元则每件服装应降价多少元;-参考答案-一、单选题1、D【分析】方程两边同时加上一次项系数一半的平方即可得到答案【详解】解:x2+2x=1,x2+2x+1=1+1,(x+1)2=2,故选D【点睛】本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方2、A【分析】设共有x个班级参赛,根据第一个球队和其他球队打场球,每个球队都打场球,并且都重复一次,根据计划安排15场比赛即可列出方程求解【详解】解:设共有x个班级参赛,根据题意得:,解得:,(不合题意,舍去),则共有6个班级参赛,故选:A【点睛】本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程3、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得【详解】解:一次项系数为:-3,常数项为:-2,故选D【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式4、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-x )m,由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键5、C【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可【详解】解:有x个球队参加比赛,根据题意可列方程为:x(x1)=30,解得:或(舍去);共有6支队伍参赛;故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系6、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可【详解】解:A是二元二次方程,故本选项不合题意; B是一元二次方程,故本选项符合题意;C是二元二次方程,故本选项不合题意;D当a=0时,不含二次项,故本选项不合题意;故选:B【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为ax2+bx+c0(a0)的形式,则这个方程就为一元二次方程7、D【分析】根据该商品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:298(1-x)2=268故选:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键8、A【分析】利用根的判别式进行求解并判断即可【详解】解:原方程中,原方程有两个不相等的实数根故选:A【点睛】熟练掌握根的判别式是解答此题的关键,当0有两不相等实数根,当=0有两相等实数根,当0没有实数根9、D【分析】利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案【详解】解:,因式分解得:,解得:,情况1:当为斜边的长时,此时斜边长为5,情况2:当,都为直角边长时,此时斜边长为,这个直角三角形的斜边长为5或,故选:D【点睛】本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜边的情况下,一定要分类讨论,分情况进行求解10、D【分析】将代入方程求解即可【详解】解:将代入可得:,解得:,故选:D【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键二、填空题1、9【分析】根据一元二次方程的解定义,代入即可求得的值【详解】解:把x3代入x2m0得9m0,解得m9故答案为9【点睛】本题考查了一元二次方程的解,掌握一元二次方程解的定义是解题的关键一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解2、2【分析】先根据根的判别式求得m的取值范围,然后根据一元二次方程根与系数的关系得到x1x2m2m2,进而求得m2或m1,故可得解【详解】解:由题意得(2m)24(m2m)0,m0,关于x的一元二次方程的两实数根,则x1x2m2m2,m2m20,解得m2或m1(舍去),故答案为:2【点睛】本题考查的是解一元二次方程和一元二次方程根与系数的关系,x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x23、40【分析】先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答【详解】解:,故答案为:40【点睛】本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键4、6【分析】确定二次项系数,一次项系数,常数项以后即可求解【详解】根据题意可得,一元二次方程的二次项系数为1,一次项系数为4,常数项为1;和为故答案为:6【点睛】本题考查了一元二次方程的一般形式,利用二次项系数、一次项系数、常数项之和算出算式是解题关键5、14【分析】根据第一天患病的人数为1+1×传播的人数,第二天患病的人数为第一天患病的人数×传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可【详解】解:设每天一人传染了x人,则依题意得1x(1x)×x225,(1x)2225,1x0,1x15,x14答:每天一人传染了14人【点睛】此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=225三、解答题1、(1),;(2)【分析】(1)提取公因式(x-2),利用因式分解法求解即可求得答案;(2)利用因式分解法求解即可求得答案【详解】解:(1) , (2) 【点睛】此题考查了一元二次方程的解法注意选择适宜的解题方法是解此题的关键2、(1);(2)见详解【分析】(1)首先利用完全平方公式以及平方差公式分解因式,进而解方程得出即可;(2)首先表示出,得出符号进而求出即可【详解】(1)解:,则,整理得:,解得:;(2)证明:把化为一般形式:, ,故无论m为何值,4m2+1永远大于0,则方程总有两个不相等的实数根【点睛】此题主要考查了因式分解法解一元二次方程以及根的判别式,正确分解因式是解题关键3、(1)2;(2)m2n+mn2【分析】(1)直接根据根与系数的关系可得答案;(2)由题意得出m、n可看作方程,据此知m+n=1,mn,将其代入计算可得;【详解】解:(1)一元二次方程5x2+10x10的两个根为x1,x2,x1+x2,x1x2;故答案为:2;(2)7m27m10,7n27n10,且mn,m、n可看作方程7x27x10,m+n1,mn,m2n+mn2mn(m+n);【点睛】本题主要考查根与系数的关系,求代数式的值,解题的关键是根据题意建立合适的方程及运算法则进行解题4、(1)2;(2)或.【分析】(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;(2)根据题意利用配方法进行计算即可解出方程.【详解】解:(1)原式(2)则或,解得:或.【点睛】本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运算法则和利用配方法求解方程是解题的关键.5、(1)(20+5x);(2)4元【分析】(1)根据“每件降价1元,则每天可多售5件”可以列出代数式;(2)根据关系式:每件服装的盈利×(原来的销售量+增加的销售量)=1600,计算得到结果即可【详解】(1)由题意得:每天可以销售服装的件数为:(20+5x);(2)由题意得:(44x)(20+5x)1600·解得,x14,x2363610,x236(不合题意,舍去),答:每件服装应降价4元【点睛】本题考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键