欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版九年级数学下册第二十七章-相似专题练习试卷(含答案详细解析).docx

    • 资源ID:30746105       资源大小:816.52KB        全文页数:39页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版九年级数学下册第二十七章-相似专题练习试卷(含答案详细解析).docx

    人教版九年级数学下册第二十七章-相似专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,分别交于点G,H,则下列结论中错误的是( )ABCD2、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)3、如图,在平面直角坐标中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数y(k0)的图象过点A并交AD于点G,连接DF若BE:AE1:2,AG:GD3:2,且FCD的面积为,则k的值是()AB3CD54、如图,是的重心,过的一条直线分别与AB、AC相交于G、H(均不与的顶点重合),分别表示四边形和的面积,则的最大值是( )AB1CD5、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD6、如图,矩形的对角线、相交于点E,轴于点B,所在直线交x轴于点F,点A、E同时在反比例函数的图象上,已知直线的解析式为,矩形的面积为120,则k的值是( )ABCD7、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,则GF的长为()ABCD8、如图,以点O为位似中心,将ABC缩小后得到ABC,已知BB2OB,则ABC与ABC的面积之比()A1:3B1:4C1:5D1:99、如图,在平行四边形ABCD中,点E是边AD上的一点,且AE2ED,EC交对角线BD于点F,则( )A6B18C4D910、如图,在ABC中,点D在边AB上,若ACDB,AD3,BD4,则AC的长为( )A2BC5D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点C是线段AB的黄金分割点(AC>BC),如果分别以点C、B为圆心,以AC的长为半径作弧相交于点D,那么B的度数是_2、如图,菱形中,为上一点,且,连接、交于点,过点作于点,则的长为_3、如图利用标杆BE测量建筑物的高度已知标杆BE高1.0m,测得AB1.5m,BC10.5m,则建筑物CD的高是_m4、在平面直角坐标系中,以原点为位似中心,作的位似图形,使它与相似比为2,若点的坐标为,则位似图形上与点对应的点的坐标为_5、在OAB中,OAOB,点C在直线AB上,BC3AC,点E为OA边的中点,连接OC,射线BE交OC于点G,则的值为_三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,AB5,BC8P为边BC上一动点(不与B,C重合),过P点作PEAP交直线CD于E(1)求证:ABPPCE;(2)设P点的运动速度为每秒1个单位长度,P从B点出发几秒后,CE的长度最大2、如图,RtABC,C90°,AC12cm,BC5cm点P从点C出发,以2cm/s的速度沿CA向点A匀速运动,同时点Q从点B出发,以1cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一个点随之停止(1)求经过几秒,PCQ的面积等于ABC面积的?(2)求经过几秒,PCQ与ABC相似?3、如图1,已知ABC,CAB45°,AB7,AC3,CDAB于点DE是边BC上的动点,以DE为直径作O,交BC为F,交AB于点G,连结DF,FG(1)求证:BCDFDB(2)当点E在线段BF上,且DFG为等腰三角形时,求DG的长(3)如图2,O与CD的另一个交点为P若射线AP经过点F,求的值4、【教材呈现】(1)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACG90°,BC6,若ABC固定不动,将AFG绕点A旋转,边AF、AG与边BC分别交于点D,E(点D不与点B重合,点E不与点C重合)求证:AE2DEBE;求BECD的值;【拓展探究】(2)如图2,在ABC中,C90°,点D,E在边BC上,BDAE30°,且,请直接写出的值5、如图,在平面直角坐标系中,的顶点坐标分别为,(1)请以原点为位似中心,画出,使它与的相似比为,变换后点、的对应点分别为点、,点在第一象限,并写出点坐标_;(2)若为线段上的任一点,则变换后点的对应点的坐标为_-参考答案-一、单选题1、D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可【详解】解:ABCD,A选项正确,不符合题目要求;AEDF,CGE=CHD,CEG=D,CEGCDH,ABCD,B选项正确,不符合题目要求; ABCD,AEDF,四边形AEDF是平行四边形,AF=DE,AEDF,; C选项正确,不符合题目要求;AEDF,BFHBAG,ABFA,D选项不正确,符合题目要求 故选D【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键2、C【解析】【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2,OC=OB=1,OF=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90°,AECAFC,故选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题3、B【解析】【分析】过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,OM=a,可得DGNDAM, ,再由BE:AE1:2,AG:GD3:2,可得到, ,从而得到 ,进而得到 ,继而,再由平行四边形的性质,可得BOFDNG,从而得到 ,再由,即可求解【详解】解:如图,过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,OM=a,AMNG,AMy轴,DGNDAM, , ,BE:AE1:2,AG:GD3:2, , , , ,点A、G在反比例函数y(k0)的图象上, , , , , ,四边形ABCD是平行四边形,OBF=GDN,BOF=GND=90°,BOFDNG, ,即, , , ,解得: , 故选:B【点睛】本题主要考查了相似三角形的性质和判定,反比例函数的几何意义,平行四边形的性质,熟练掌握相关知识点是解题的关键4、A【解析】【分析】根据是的重心可得,过O作MNBC交AN于N,交AC于M,过M作MEAB交GH于E,易证OM=ON,设,分别表示出四边形和的面积即可【详解】过O作MNBC交AN于N,交AC于M,过M作MEAB交GH于E是的重心,D是BC中点BD=CD,MNBC,MEAB设x为定值当y越小时值越大当时最大,此时GHBC故选:A【点睛】题是几何综合题,以三角形的重心为背景,考查了重心的概念、性质以及应用,考查了相似三角形的性质知识点解题的关键是表示出5、A【解析】【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件6、C【解析】【分析】过点作于点,设与轴交于点,根据题意, ,求得,进而可得,即,设则,根据面积为120求得的值,点A、E同时在反比例函数的图象上,表示出,则,即 ,即可求得的值【详解】解:如图,过点作于点,设与轴交于点,直线的解析式为,令,令,设则在中,四边形是矩形,矩形的面积为120,即解得根据题意,点A、E同时在反比例函数的图象上,设,则,即 即可故选C【点睛】本题考查了反比例函数与几何图形,相似三角形的性质与判定,一次函数与坐标轴交点问题,矩形的性质,熟练运用以上知识是解题的关键7、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBMBAE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90°,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90°,EBM+BEM90°,BAE+BEM90°,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键8、D【解析】【分析】直接根据题意得出位似比,根据位似比等于相似比,进而根据面积比等于相似比的平方求得面积比【详解】解答:解:以点O为位似中心,将ABC缩小后得到ABC,BB2OB,OBOB,ABC与ABC的面积之比为:1:9故选:D【点睛】此题主要考查了位似图形的性质,正确得出位似比是解题关键9、B【解析】【分析】先求解,再利用平行四边形的性质证明,得到,再利用相似三角形面积比等于相似比的平方得出两个三角形的面积关系可得答案【详解】解:AE=2ED,AD=AE+DE=3DE, ,四边形ABCD为平行四边形, ADBC,BC=AD, DEF=BCF,EDF=CBF, , , 故选:B【点睛】本题主要考查了相似三角形的判定与性质,平行四边形的性质,相似两个三角形的面积之间的关系,掌握以上知识是解题的关键10、B【解析】【分析】求出AB,通过AA证ACDABC,推出,代入求出即可【详解】解:AD3,BD4,AB7,AA,ACDB,ACDABC,AC2AD×AB21,AC,故选:B【点睛】本题考查了相似三角形的性质和判定的应用,关键是推出ACDABC并进一步得出比例式二、填空题1、72°【解析】【分析】根据黄金分割的定义得到AC2=BCAB,而AC=CD=BD,则BD2=BCAB,根据相似三角形的判定得BDCBAD,则A=BDC,设A=x,则BDC=x,根据三角形外角性质得ADC=A=2x,然后根据三角形内角和定理得到x+2x+2x =180°,再解方程即可【详解】解:点C是线段AB的一个黄金分割点,AC2=BCAB,CD=AC=BD,BD2=BCAB,即BD:BC=AB:BD,而ABD=DBC,BDCBAD,A=BDC,设A=x,则ADC=x,DCB=ADC+A=2x,而CD=BD,DCB=B=2x,x+2x+2x=180°,解得x=36°, 故答案为:72°【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点2、4【解析】【分析】过点作,根据菱形的面积和边长求得,则,可得,可得,根据菱形的性质可得,进而证明,列出比例式求得,进而可得,代入即可求得的长【详解】解:如图,过点作,四边形是菱形,故答案为:【点睛】本题考查了相似三角形的性质与判定,菱形的性质,掌握相似三角形的性质与判定是解题的关键3、8【解析】【分析】先证AEBADC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD8(m).故答案为8【点睛】本题考查了相似的判定和性质,利用相似的性质列出含所求边的比例式是解题的关键4、(8,4)或(-8,-4)#(-8,-4)或(8,4)【解析】【分析】作出图形,连接OA,分类讨论,并根据位似图形的相似比为2,且位似中心为原点,即可直接求出结果【详解】如图,连接OA,根据题意可分类讨论:设的位似三角形为,此时点在OA的延长线上,如图,它们的相似比为2,此时位似图形上与点A对应的点的坐标为(8,4)设的位似三角形为,此时点在OA的反向延长线上,如图,它们的相似比为2, ,此时位似图形上与点A对应的点的坐标为(-8,-4)故答案为:(8,4)或(-8,-4)【点睛】本题考查求位似图形的对应坐标,利用分类讨论和数形结合的思想是解答本题的关键5、或【解析】【分析】可分点在线段上和点在线段的延长线上两种情况,根据平行线分线段成比例定理,列出比例式求解即可得到答案【详解】解:如图1,点在线段上,过作交于,点为边的中点,;如图2,点在线段的延长线上,过作交于,点为边的中点,即,;故答案为:或【点睛】此题考查了平行线分线段成比例定理的运用,熟练利用平行线分线段成比例定理是解题关键三、解答题1、(1)见解析;(2)秒后,EC有最大值165【解析】【分析】(1)根据两组角分别对应相等的两个三角形相似,进行解答即可;(2)设运动时间为t,根据相似三角形的性质,列出CE关于t的二次函数关系式,然后根据二次函数的性质求最大值即可【详解】解:(1)PEAP,APE=90°,APB+EPC=90,APB+PAB=90°,PAB=EPC,B=C=90°,ABPPCE;(2)设运动时间为t,根据题意得:BP=t,PC=8-t,ABPPCE,ABPC=BPEC,即58-t=tEC,EC=t(8-t)5=-15t2+85t=-15(t-4)2+165,t=4时,EC有最大值165【点睛】本题考查了矩形的性质,相似三角形的判定与性质,二次函数的应用,熟练掌握相似三角形的判定定理以及二次函数的性质是解本题的关键2、(1)经过2秒或3秒后,PCQ的面积等于面积的;(2)经过3011秒或2529秒,PCQ与相似【解析】【分析】(1)设经过t秒后,PCQ的面积等于面积的,用表示、CQ的长,再根据三角形的面积列式计算即可;(2)分两种情况分别计算,设经过秒后PCQACB,推ACBC=PCCQ,设经过秒后PCQBCA,得BCAC=PCCQ,代入用t表示的线段计算即可【详解】解:(1)设经过t秒后,PCQ的面积等于面积的,则,PC=2t,BQ=t,CQ=5-t,12×2t×(5-t)=12×15×12×5,整理得t2-5t+6=0,解得t1=2,t2=3,0<t<5,经过2秒或3秒后,PCQ的面积等于面积的(2)设经过秒后PCQACB,ACBC=PCCQ,125=2x5-x,解得x=3011,设经过秒后PCQBCA,BCAC=PCCQ,512=2x5-x,解得x=2529;经过3011秒或2529秒,PCQ与相似【点睛】本题主要考查了相似三角形的判定、一元二次方程应用,解题的关键是熟练掌握一元二次方程解法及相似三角形的判定方法,分情况讨论也是解题关键3、(1)见解析;(2),7225,2;(3)2516【解析】【分析】(1)由DE为直径得BCD+CDF=90°,再由CDAB 可得FDB+CDF=90°,即可得出结论;(2)分当DF=DG时, 当DF=FG时,当FG=DG时,三种情况讨论,即可得出结论;(3) 由四边形PDEF是O圆内接四边形,可得PAD=EDF,连结PG,得出ADPDFE,再得到CDBPFG,列比例式即可得出结论【详解】证明:(1)DE是直径CFD=90°BCD+CDF=90°CDABFDB+CDF=90°BCD=FDB(2)(i)当DF=DG时,如图:CAB=45°,CDAB,AC=3AD=CD=3AB=7BD=7-3=4BC=32+42=5DF=3×45=125DG=125(ii)如图:当DF=FG时,过F作FHBD交BD于点H, DFHCBDDHCD=DFCBDH=DF×35=125×35=3625DG=2DH=7225(iii)如图:当FG=DG时,1=21+3=2+4=90°3=4FG=GB=DGDG=12BD=2(3)如图:四边形PDEF是O圆内接四边形APD=DEFAPD+PAD=DEF+EDF=90°PAD=EDF连结PGPAD=EDFADP=DFE=90°ADPDFEAPDE=ADDF=3×512=54PDG=90°PG是直径PFG=90°FPG=FDG=BCDCDBPFGFGFG=CBDB=54DEFG=CBDB=54APFG=APDEDEFG=54×54=2516.【点睛】本题是圆的综合题,考查了等腰三角形的性质和判定、三角形相似的性质和判定、圆的性质,直角三角形的性质,正确的添加辅助线是解决问题的关键.4、(1)证明见解析;18;(2)25318-2【解析】【分析】(1)只需要证明ABEDAE,得到AEDE=BEAE,即可推出AE2=DE·BE;先证明AEB=DAC,则可证AEBDAC,推出BE·CD=AB·CA,然后利用勾股定理求出AB=AC=32,即可得到BE·CD=AB·CA=18;(2)设AD=3x,AE=4x,先证明ADEBDA,推出BDAB=ADAE=34,设BD=3y,AB=4y,得到DE=AEADAB=3x2y,求出AC=2y,BC=23y,则CD=BC-BD23-3y在直角ACD中,AD2=CD2+AC2,则9x2=23-32y2+4y2,即可推出x2y2=25-1239,由此求解即可【详解】解:(1)ABC和AGF都是等腰直角三角形,BAC=G=90°,B=C=GAF=45°,又AED=NEA,ABEDAE,AEDE=BEAE,AE2=DE·BE;DAC=DAE+CAE,AEB=C+CAE,C=DAE=45°,AEB=DAC,又B=C,AEBDAC,BECA=ABCD,BE·CD=AB·CA,AB=AC,BAC=90°,BC=6,AB2+AC2=BC2=36,即2AB2=36,AB=AC=32,BE·CD=AB·CA=18;(2),可设AD=3x,AE=4x,B=DAE=30°,ADE=BDA,ADEBDA,ADBD=AEAB=DEAD,BDAB=ADAE=34,可设BD=3y,AB=4y,DE=AEADAB=3x2y,B=30°,ACB=90°,AC=12AB=2y,BC=AB2-AC2=23y,CD=BC-BD23-3y在直角ACD中,AD2=CD2+AC2,9x2=23-32y2+4y2,x2y2=25-1239,DEBC=3x2y23y=3x22y2=32×25-1239=25318-2【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键5、a-2b+3c=6-18+36=【点睛】本题考查了比例关系,解方程及求代数式的值,由比例关系设a=2k,则b=3k,c=4k是关键24(1)图见解析,;(2)【解析】【分析】(1)根据相似比可确定三点的坐标,从而可画出并写出点坐标;(2)根据相似比即可确定点的坐标【详解】(1)如图所示:ABC即为所求,;故答案为:(2)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P的坐标为:故答案为:【点睛】本题考查了在坐标系中作位似图形,求位似图形对应的坐标,关键是掌握位似图形的含义

    注意事项

    本文(人教版九年级数学下册第二十七章-相似专题练习试卷(含答案详细解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开