2022年最新人教版八年级数学下册第十八章-平行四边形同步测试试题(含解析).docx
-
资源ID:30746108
资源大小:676.66KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版八年级数学下册第十八章-平行四边形同步测试试题(含解析).docx
人教版八年级数学下册第十八章-平行四边形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD2、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD3、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm4、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5B6C7D85、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形6、如图所示,在矩形ABCD中,已知AEBD于E,DBC30°,BE=1cm,则AE的长为( )A3cmB2cmC2cmDcm7、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D28、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24<m<39B14<m<62C7<m<31D7<m<129、如图,在菱形中,P是对角线上一动点,过点P作于点E于点F若菱形的周长为24,面积为24,则的值为( )A4BC6D10、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD中,AB2,AD1,ADC60°,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点处,折痕交CD边于点E若点P是直线l上的一个动点,则+PB的最小值_2、已知长方形ABCD中,AB4,BC10,M为BC中点,P为AD上的动点,则以B、M、P为顶点组成的等腰三角形的底边长是_3、如图中,分别是由个、个、个正方形连接成的图形,在图中,;在图中,;通过以上计算,请写出图中_(用含的式子表示)4、如图,菱形ABCD的两条对角线长分别为AC6,BD8,点P是BC边上的一动点,则AP的最小值为 _5、如图,四边形ABCD是矩形,延长DA到点E,使AEDA,连接EB,点F1是CD的中点,连接EF1,BF1,得到EF1B;点F2是CF1的中点,连接EF2,BF2,得到EF2B;点F3是CF2的中点,连接EF3,BF3,得到EF3B;按照此规律继续进行下去,若矩形ABCD的面积等于2,则EFnB的面积为_(用含正整数n的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图,在ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且ACE是等边三角形(1)求证:四边形ABCD是菱形;(2)若AED2EAD,ABa,求四边形ABCD的面积2、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF3、阅读探究小明遇到这样一个问题:在中,已知,的长分别为,求的面积小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积他把这种解决问题的方法称为构图法,(1)图1中的面积为_实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个的正方形网格(每个小正方形的边长为1)利用构图法在答题卡的图2中画出三边长分别为,的格点的面积为_(写出计算过程)拓展延伸(3)如图3,已知,以,为边向外作正方形和正方形,连接若,则六边形的面积为_(在图4中构图并填空)4、如图,在四边形ABCD中,ABDC,ABAD,对角线AC,BD交于点O,AC平分BAD,过点C作CEAB交AB的延长线于点E,连接OE(1)求证:四边形ABCD是菱形;(2)若AB,BD2,求OE的长5、如图,在RtABC中,ACB90°,D为AB中点,(1)试判断四边形BDCE的形状,并证明你的结论;(2)若ABC30°,AB4,则四边形BDCE的面积为 -参考答案-一、单选题1、C【解析】【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出2、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键3、C【解析】【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键4、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键5、B【解析】【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形6、D【解析】【分析】根据矩形和直角三角形的性质求出BAE=30°,再根据直角三角形的性质计算即可【详解】解:四边形ABCD是矩形,BAD=90°,BDA=DBC=30°,AEBD,DAE=60°,BAE=30°,在RtABE中,BAE=30°,BE=1cm,AB=2cm,AE=(cm),故选:D【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键7、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半8、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键9、A【解析】【分析】连接BP,通过菱形的周长为24,求出边长,菱形面积为24,求出的面积,然后利用面积法,即可求出的值【详解】解:如图所示,连接BP,菱形ABCD的周长为24,又菱形ABCD的面积为24, ,故选:A【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系10、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质二、填空题1、【解析】【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+ PB最短【详解】过点D作DMAB交BA的延长线于点M,四边形ABCD是平行四边形,AD1,AB2,ADC60°,DAM60°,由翻折变换可得,ADAD1,DEDE,ADCADE60°,DAMADE60°,ADDE,又DEAB,四边形ADED是菱形,点D与点D关于直线l对称,连接BD交直线l于点P,此时PD+PB最小,PD+PBBD,在RtDAM中,AD1,DAM60°,AM=12AD=12,DM=32AD=32,在RtDBM中,DM=32,MBAB+AM=52,BD=DM2+MB2=322+522=7,即PD+PB最小值为,故答案为:【点睛】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键2、5或或【解析】【分析】分三种情况:当BP=PM时,点P在BM的垂直平分线上,取BM的中点N,过点N作NPBM交AD于P,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解【详解】解:BC10,M为BC中点,BM=5,当BMP为等腰三角形时,分三种情况:当BP=PM时,点P在AM的垂直平分线上,取BM的中点N,过点N作NPAD交AD于P,如图1所示:则PBM是等腰三角形底边BM的长为5当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,PN=AB=4,MN= 在RtPBN中,当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得 在RtPBN中,综上,以B、M、P为顶点组成的等腰三角形的底边长是:5 或或故答案为:5 或或【点睛】本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键3、90n【解析】【分析】连接各小正方形的对角线,由图1中四边形内角和定理化简可得:;由图2中四边形内角和定理化简可得:;结合图形即可发现规律,求得结果【详解】解:连接各小正方形的对角线,如下图: 图中,即,图中,即,以此类推,故答案为:【点睛】题目主要考查根据规律列出相应代数式,正方形性质等,理解题意,探索发现规律是解题关键4、4.8【解析】【分析】由垂线段最短,可得APBC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解【详解】设AC与BD的交点为O,点P是BC边上的一动点,APBC时,AP有最小值,四边形ABCD是菱形,ACBD,AOCOAC3,BODOBD4,故答案为:4.8【点睛】本题考查了菱形的性质,勾股定理,确定当APBC时,AP有最小值是本题关键5、【解析】【分析】由AEDA,点F1是CD的中点,矩形ABCD的面积等于2,结合矩形的性质可得EF1D和EAB的面积都等于1,结合三角形中线的性质可得EF1F2的面积等于,同理可得EFn1Fn的面积为,BCFn的面积为22,即可得出结论【详解】AEDA,点F1是CD的中点,矩形ABCD的面积等于2,EF1D和EAB的面积都等于1,点F2是CF1的中点,EF1F2的面积等于,同理可得EFn1Fn的面积为,BCFn的面积为22,EFnB的面积为2+112(1)故答案为:【点睛】本题考查了矩形的性质,三角形中线的性质,解题的关键是根据面积找出规律三、解答题1、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EOAC,即BDAC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案【详解】(1)证明:四边形ABCD是平行四边形,AOOC,ACE是等边三角形,EOAC (三线合一),即BDAC,ABCD是菱形;(2)解:ACE是等边三角形,EAC60°由(1)知,EOAC,AOOCAEOOEC30°,AOE是直角三角形,AED2EAD,EAD15°,DAOEAOEAD45°,ABCD是菱形,BAD2DAO90°,菱形ABCD是正方形,正方形ABCD的面积AB2a2【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键2、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键3、(1);(2)作图见详解;8;(3)在网格中作图见详解;31【分析】(1)根据网格可直接用割补法求解三角形的面积;(2)利用勾股定理画出三边长分别为、,然后依次连接即可;根据中图形,可直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可【详解】解:(1)ABC的面积为:,故答案为:;(2)作图如下(答案不唯一): 的面积为:,故答案为:8;(3)在网格中作出, 在与中,六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积,故答案为:31【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键4、(1)见解析;(2)2【分析】(1)先判断出OABDCA,进而判断出DACDCA,得出CDADAB,即可得出结论;(2)先判断出OEOAOC,再求出OB1,利用勾股定理求出OA,即可得出结论【详解】(1)证明:ABCD,OABDCA,AC为DAB的平分线,OABDAC,DCADAC,CDADAB,ABCD,四边形ABCD是平行四边形,ADAB,平行四边形ABCD是菱形;(2)解:四边形ABCD是菱形,OAOC,BDAC,CEAB,OEOAOC,BD2,OBBD1,在RtAOB中,AB,OB1,OA2,OEOA2【点睛】此题主要考查特殊平行四边形的判定与性质,解题的关键是菱形的判定与性质、勾股定理的应用5、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下: , 四边形是平行四边形, ACB90°,D为AB中点, 四边形是菱形.(2) ABC30°,AB4,ACB90°, D为AB中点, 四边形是菱形, 故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.