精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数章节练习试卷(无超纲).docx
-
资源ID:30748474
资源大小:923.35KB
全文页数:36页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数章节练习试卷(无超纲).docx
人教版九年级数学下册第二十八章-锐角三角函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为( )米(参考数据:,)A104B106C108D1102、的值为( )A1B2CD3、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC50米,ACB46°,则小河宽AB为多少米()A50sin46°B50cos46°C50tan46°D50tan44°4、已知在RtABC中,C=90°,A=60°,则 tanB的值为( )AB1CD25、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD6、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是( )ABCD7、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos8、如图,在RtABC中,ABC90°,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD9、如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到,则的值为( )ABCD10、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等边的边长为2,点O是的中心,绕点O旋转,分别交线段于D,E两点,连接,给出下列四个结论:;四边形的面积始终等于;周长的最小值为3其中正确的结论是_(填序号)2、计算:_3、如图,AB为半圆O的直径,点C为半圆上的一点,CDAB于点D,若AB=10,CD=4,则sinBCD的值为_4、如图所示,某商场要在一楼和二楼之间搭建扶梯,已知一楼与二楼之间的地面高度差为米,扶梯 的坡度,则扶梯的长度为_米5、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,且与交于点,连接,则下列结论:;其中正确的是_(填序号即可)三、解答题(5小题,每小题10分,共计50分)1、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF30cm,CE:CD1:3,DCF45°,CDF30°,请根据以上信息,解决下列问题(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离 cm2、如图,ABC中,ADBC,垂足是D,若BC14,AD12,求:(1)AC的值(2)sinC的值3、4、如图,在中,点P从点出发,沿折线向终点C运动,点P在边、边上的运动速度分别为、在点P的运动过程中,过点P作所在直线的垂线,交边或边于点Q,以为一边作矩形,且,与在的同侧设点P的运动时间为t(秒),矩形与重叠部分的面积为(1)求边的长(2)当时, ,当时, (用含t的代数式表示)(3)当点M落在上时,求的值(4)当矩形与重叠部分图形为四边形时,求S与的函数关系式5、在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点,点在第三象限的抛物线上,直线经过点、点,点的横坐标为(1)如图1,求抛物线的解析式;(2)如图2,直线交轴于点,过点作轴,交轴于点,交抛物线于点,过点作,交直线于点,求线段的长;(3)在(2)的条件下,点在上,直线交于点,点在第二象限,连接交于点,连接,点在的延长线上,点在直线上,且点的横坐标为5,连接,求点的纵坐标 -参考答案-一、单选题1、A【分析】根据题意作交于E,延长AC,作交于F,由坡度的定义求出DF的长,得AE的长,再解直角三角形求出DE、BE的长,即可解决问题【详解】解:如图,作交于E,延长AC,作交于F,斜坡CD的坡度为i=1:2.4,CD=104米,DF=AE=40(米),CF=96(米),,,(米),,,(米),(米).故选:A.【点睛】本题考查的是解直角三角形的应用-仰角俯角、坡度坡角问题,正确作出辅助线,构造直角三角形是解答此题的关键2、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键3、C【分析】根据三角函数的定义求解即可【详解】解:在中,米,故选:C,【点睛】此题考查了解直角三角形的应用,解题的关键是掌握三角函数的定义4、A【分析】根据直角三角形的两个锐角互余即可求得,根据特殊角的三角函数值即可求解【详解】C=90°,A=60°,又故选A【点睛】本题考查了直角三角形的两个锐角互余,求特殊角的三角函数值,理解特殊角的三角函数值是解题的关键5、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键6、B【分析】利用,得到BAC=DCA,根据同圆的半径相等,AC=AB=3,再利用勾股定理求解 可得tanACD=,从而可得答案.【详解】解:如图, , BAC=DCA 同圆的半径相等, AC=AB=3,而 在RtACD中,tanACD= tanBAC=tanACD= 故选B【点睛】本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键7、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是解题的关键8、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90°,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90°,C+DBC=90°,A=DBC,在RtABC中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键9、B【分析】利用勾股定理逆定理得出CDB是直角三角形,以及锐角三角函数关系进而得出结论【详解】解:如图,连接BD,由网格利用勾股定理得:是直角三角形,故选:B【点睛】本题考查旋转的性质、等腰三角形的性质、余弦等知识,是重要考点,掌握相关知识是解题关键10、D【分析】根据直角三角形斜边中线等于斜边一半求出AB,再根据三角函数的意义,可求出答案【详解】解:在ABC中,ACB90°,点D为AB边的中点,ADBDCDAB,,又CD3,AB6,故选:D【点睛】本题考查直角三角形的性质和三角函数,理解直角三角形的边角关系是得出正确答案的前提二、填空题1、【解析】【分析】如图:连接OB、OC,利用等边三角形的性质得ABO=OBC=OCB=30°,再证明BOD=COE,可证BODCOE,即BD=CE、OD=OE,则可对进行判断;利用 SBOD=SCOE得到四边形ODBE的面积 =13SABC=33,则可对进行判断;再作OHDE,则DH=EH,计算出SDOE=34OE2,利用SDOE随OE的变化而变化和四边形ODBE的面积为定值可对进行判断;由于BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OEBC时,OE最小,BDE的周长最小,计算出此时OE的长则可对进行判断【详解】解:连接OB、OC,如图,等边ABC=ACB=60°,点O是ABC的中心,OB=OC,OB、OC分别平分ABC和ACB,ABO=OBC=OCB=30°BOC=120°,即BOE+COE=120°,而DOE=120°,即BOE+BOD=120°,BOD=COE,在BOD和COE中BOD=COEBO=COOBD=OCE BODCOE,BD=CE,OD=OE,所以正确;SBOD=SCOE四边形ODBE的面积 =SOBC=13SABC=13×34×22=33,故正确;如图:作OHDE,则DH=EH,DOE=120°,ODE=_OEH=30°, OH=12OE,HE =3OH=32OE, DE=3OE, SODE=1212OE3OE=34OE2,即SDOE随OE的变化而变化,而四边形ODBE的面积为定值, SODESBDE;所以错误;BD=CE,BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=2+DE=2+OE当OEBC时,OE最小,BDE的周长最小,此时 OE=33,BDE周长的最小值=2+1=3,所以止确故填【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质等知识点,灵活应用相关知识成为解答本题的关键2、【解析】【分析】根据特殊的三角函数值解答即可【详解】解:,故答案为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键3、【解析】【分析】如图,连接OC,由AB是直径可得OC=OB=5,利用勾股定理可求出OD的长,即可得出BD的长,利用勾股定理可求出BC的长,根据正弦的定义即可得答案【详解】如图,连接OC,AB为半圆O的直径,AB=10,OC=OB=5,CDAB于点D,CD=4,OD=3,BC=,sinBCD=故答案为:【点睛】本题考查圆的性质、勾股定理及三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是邻边与斜边的比值;正切是对边与邻边的比值;熟练掌握三角函数的定义是解题关键4、【解析】【分析】如图所示,过点C作地面的垂线,垂直为D,由题意得:,据此利用勾股定理求解即可【详解】解:如图所示,过点C作地面的垂线,垂直为D,由题意得:,故答案为:7【点睛】本题主要考查了勾股定理和坡度,正确作出辅助线,构造直角三角形是解题的关键5、【解析】【分析】证ADEBCE和ADFCDF导角可知正确,利用三角函数表示出线段长,可得正确;证DCHBDH,可得正确,根据DCHHDC,可得错误【详解】解:四边形ABCD是正方形,点E是DC的中点,ABADBCCD,DECE,BCEADE90°,ADEBCE(SAS)CBEDAE,BEAE,ADDC,ADFCDF45°,DFDF,ADFCDF(SAS),DAEDCF,DCFCBE,CBE+CEB90°,DCF+CEB90°,CHE90°,CFBE,故正确;点为边中点, ,DAEDCFCBE,设,则,则,ADFCDF(SAS),FACF,解得,故正确;,DEHDEB,DEHBED,EDHDBE,DBE+CBE45°,EDH+HDB45°,HDBEBCECH,DCHBDH,即,故正确;,DAEDBH,DCHHDC,故错误, 故答案为:【点睛】本题考查了解直角三角形和相似三角形的判定与性质,解题关键是熟练运用相似三角形的性质进行推理证明三、解答题1、(1)(40+40)cm;(2)(20)cm【解析】【分析】(1)过点F作FGDE于点G,分别利用三角函数求出FG和DG,然后求出CD,进而求出CE,即可求出DE,最后根据AC2DE即可求出AC;(2)作AHED延长线于H,根据AHAC·sin45°求出AH即可【详解】解:(1)过点F作FGDE于点G,FGDFGC90°,在RtDGF中,CDF30°,FGFDsin30°30×15(cm),DGFDcos30°30×15(cm),在RtCGF中,DCF45°,CGFG15(cm),CDCG+DG15+15(cm),CE:CD1:3,CECD×(15+15)5+5(cm),DEEC+CD5+5+15+1520+20(cm),DEBCAB,ACAB+BC2DE2×(20+20)40+40(cm),即AC的长度为(40+40)cm(2)作AHED延长线于H,在RtAHC中,ACH45°,AHACsin45°(40+40)×20+20(cm),故答案为:(20)【点睛】本题考查了解直角三角形应用题,一般步骤为(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型(2)将实际问题中的数量关系归结为解直角三角形的问题当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形(3)寻找直角三角形,并解这个三角形2、(1)13;(2)【解析】【分析】(1)首先根据的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度;(2)由,代值计算即可【详解】(1)在中,;(2)在中,【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系是解题的关键3、【解析】【分析】先去掉绝对值,再计算三角函数值和零指数幂,然后化简算术平方根后可以得解【详解】解:原式=【点睛】本题考查实数的运算,熟练掌握特殊角的三角函数值、零指数幂的计算和算术平方根的化简和计算是解题关键4、(1);(2);(3)或;(4)【解析】【分析】(1)利用勾股定理直接计算即可;(2)先求解再用含的代数式表示 再利用三角函数建立方程求解两种情况下的即可;(3)分两种情况讨论:如图,当在上,落在上,如图,当在上,落在上,则重合,再利用矩形的性质结合三角函数可得结论;(4)如图,当第一次落在上,即时,此时重叠部分的面积为四边形, 当时,重叠部分为四边形,如图, 当时,此时重叠部分的面积为四边形,如图,当第2次落在上时, 当时,此时重叠部分的面积为四边形,再利用图形的性质列面积函数关系式即可.【详解】解:(1) , (2)当时,在上, 而四边形为矩形, 当时,在上,如图,此时, , , 故答案为: (3)如图,当在上,落在上,此时 解得: 如图,当在上,落在上,则重合, 同理可得: 解得: (4)当第一次落在上,即时,此时重叠部分的面积为四边形,如图,此时 当落在上时,如图,同理可得: 解得: 当时,重叠部分为四边形,如图,同理可得: 如图,当落在上时,同理可得: 而 解得: 当时,此时重叠部分的面积为四边形,如图,此时 当第2次落在上时, 当时,此时重叠部分的面积为四边形,如图,同理可得: 综上:【点睛】本题考查的是平行四边形的性质,矩形的判定与性质,列面积函数关系式,锐角三角函数的应用,清晰的分类讨论是解题的关键.5、(1)抛物线的解析式为:;(2);(3)点N的纵坐标为5【解析】【分析】(1)根据题意可得一次函数图象经过A、D两点,所以当及当时,可确定A、D两点坐标,然后代入抛物线解析式求解即可确定;(2)根据题意当时,代入抛物线解析式确定点P的坐标,求得,然后求出直线与y轴的交点T,利用勾股定理确定,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P作轴,且,即,利用相似三角形的性质可确定,求出直线GF的函数解析式,过点M作轴,设且,可求得MF的长度,设直线MP的函数解析式为:,将点,代入即可确定点的坐标,求出,根据题意即可确定点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,利用相似三角形及勾股定理即可得出结果【详解】解:(1)经过A、D两点,当时,解得,当时,将A、D两点代入抛物线解析式可得:,解得:,抛物线的解析式为:;(2)当时,解得:,直线解析式,当时,在中,轴,轴,即;(3)如图所示:过点P作轴,且,即,设直线GF的函数解析式为:,可得:,解得:,直线GF的函数解析式为:,过点M作轴,设且,即,设直线MP的函数解析式为:,将点,代入可得:可得:,解得:,点,解得:,点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,设,则,代入化简可得:,联立求解可得:,点N的纵坐标为5【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键