精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理综合训练练习题(精选).docx
-
资源ID:30750682
资源大小:662.09KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理综合训练练习题(精选).docx
人教版八年级数学下册第十七章-勾股定理综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtDFE中,两个阴影正方形的面积分别为SA36,SB100,则直角三角形DFE的另一条直角边EF的长为( )A5B6C8D102、如图,“赵爽弦图”是吴国的赵爽创制的以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中,则阴影部分的面积是( )A169B25C49D643、如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处,若AB3,AD5,则EC的长为( )A1BCD4、满足下列条件的ABC,不是直角三角形的是()AA:B:C5:12:13Ba:b:c3:4:5CCABDb2a2c25、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A2、3、4B、C5、12、13D30、50、606、如图,以RtABC(ACBC)的三边为边,分别向外作正方形,它们的面积分别为S1S2S3,若S1S2S312,则S1的值是( )A4B5C6D77、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米8、如图,点P表示的数是1,点A表示的数是2,过点A作直线l垂直于PA,在直线l上取点B,使AB1,以点P为圆心,PB为半径画弧交数轴于点C,则点C所表示的数为( )ABCD9、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD10、如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A64B16C8D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一只蚂蚁沿着边长为1的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为_2、如图,AD是等腰三角形ABC的顶角平分线,且AD3,BC8,则AB的长为_3、一个直角三角形的两边长为3和6,则第三边的边长是_4、如图,在RtABC中,B90°,A60°,AB,E为AC的中点,F为AB上一点,将AEF沿EF折叠得到DEF,DE交BC于点G,若BFD30°,则CG_5、如图,一个圆柱形工艺品高为16厘米,底面周长12厘米,现在需要从下底的处绕侧面一周,到上底(的正上方)处镶嵌一条金丝,则金丝至少_厘米三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,在RtABC和RtADE中,ABAC,ADAE,且点D在BC边上滑(点D不与点B,C重合),连接EC则线段BC,DC,EC之间满足的等量关系式为 ;求证:BD2+CD22AD2(2)如图2,在四边形ABCD中,ABCACBADC45°若BD13,CD5,求AD22、已知:ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中PCQ=90°,探究并解决以下问题:(1)如图1,若点P在线段AB上,且AC=4,PA=,则线段PB= ,PC= 猜想:三者之间的数量关系为 (2)如图2,若点P在线段AB的延长线上,则在(1)中所猜想的结论仍然成立,请你利用图2给出证明过程(3)若动点P满足,请直接写出的值(提示:请你利用备用图探究) 3、ABC和DBE都是以点B为顶点的等腰直角三角形,ABC=DBE= 90°,DBE可以点B为旋转中心进行旋转 (1)如图1,当边BD恰好在ABC的BC边上时,连接 AD ,若BE=1,AD= 2求线段DC的长; (2)如图2,当边BD旋转至ABC外时,连接CD、AD、CE ,其中AD与CE相交于点F求证:CE AD ; (3)如图3,F为AC的中点,当边BD旋转至ABC内时,连接AD、CE、FD,并在FD的延长线上取一点G,连结CG,使CGCE求证:FDA=CGF 4、如图是俱乐部新打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形ADCG和长方形DEFC均为木质平台的横截面,点G在AB上,点C在GF上,点D在AE上,经过现场测量得知:CD1米,AD15米(1)小敏猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度;(2)为加强游戏安全性,俱乐部打算再焊接一段钢索BF,经测量DE3米,请你求出要焊接的钢索BF的长(结果不必化简成最简二次根式)5、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图中画出一个面积为10的正方形-参考答案-一、单选题1、C【分析】根据正方形面积公式可得,然后利用勾股定理求解即可【详解】解:由题意得:,DEF是直角三角形,且DEF=90°,故选C【点睛】本题主要考查了以直角三角形三边为边长的图形面积,解题的关键在于能够熟练掌握勾股定理2、C【分析】先利用勾股定理求出,再利用大正方形的面积减去四个全等直角三角形的面积即可得【详解】解:,则阴影部分的面积是,故选:C【点睛】本题考查了勾股定理、全等三角形的性质,熟练掌握勾股定理是解题关键3、D【分析】由翻折可知:ADAF5DEEF,设ECx,则DEEF3x在RtECF中,利用勾股定理构建方程即可解决问题【详解】解:四边形ABCD是矩形,ADBC5,ABCD3,BBCD90°,由翻折可知:ADAF5,DEEF,设ECx,则DEEF3x在RtABF中,BF4,CFBCBF541,在RtEFC中,EF2CE2CF2,(3x)2x212,x,EC故选:D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键4、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解【详解】解:A、A:B:C5:12:13,C180°×93.6°,不是直角三角形,故此选项正确;B、32+4252,是直角三角形,故此选项不合题意;C、ABC,AB+C,A+B+C180°,A90°,是直角三角形,故此选项不合题意;D、b2a2c2,a2b2+c2,是直角三角形,故此选项不合题意;故选:A【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理5、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可【详解】解:A、22+3242,不能构成直角三角形,故此选项不符合题意;B、()2+()2()2,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502602,不能构成直角三角形,故此选项不符合题意故选:C【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形6、C【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案【详解】解:由勾股定理得:AC2+BC2=AB2,S3+S2=S1,S1+S2+S3=12,2S1=12,S1=6,故选:C【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积7、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理8、D【分析】首先在直角三角形中,利用勾股定理可以求出线段PB的长度,然后根据PB=PC即可求出OC的长度,接着可以求出数轴上点C所表示的数【详解】解:,PB=PC,点C的数为,故选:D【点睛】此题主要考查了实数与数轴之间的对应关系,首先正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断9、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2×a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键10、C【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可【详解】解:由勾股定理得,正方形A的面积28922564,字母A所代表的正方形的边长为8,故选:C【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2二、填空题1、#【分析】根据题意将正方体展开,根据两点之间线段最短,构造出直角三角形,即可求出AC的长【详解】解:将正方体展开后如图:因为,故答案为:.【点睛】本题考查勾股定理的运用和两点之间线段最短以及解答此题的关键是根据两点之间线段最短将图形展开,然后利用勾股定理解答2、5【分析】由三线合一定理可得BDCD4,ADBC,由此利用勾股定理求解即可【详解】解:AD是等腰三角形ABC的顶角平分线,BC8,BDCD4,ADBC,ADB90°,由勾股定理得:,故答案为:5【点睛】本题主要考查了三线合一定理和勾股定理,熟知三线合一定理是解题的关键3、或【分析】由于这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答【详解】解:分两种情况:(1)3、6都为直角边,由勾股定理得,斜边为 ;(2)3为直角边,6为斜边,由勾股定理得,直角边为 故答案为:或【点睛】此题考查的知识点是勾股定理,关键要明确本题利用了分类讨论思想,是数学中常用的一种解题方法4、2【分析】由直角三角形的性质求出,由折叠的性质得出,可求出,由勾股定理可求出的长【详解】解:,为的中点,将沿折叠得到,设,则,解得,故答案为:2【点睛】本题考查了折叠的性质,直角三角形的性质,勾股定理,三角形的内角和定理等知识,熟练掌握折叠的性质是解题的关键5、20【分析】将圆柱的侧面展开,得到一个矩形,然后利用两点之间线段最短可得的长即是金丝的最短路线长,然后由勾股定理求解即可【详解】解:解:沿AB剪开可得矩形,如图所示:圆柱的高为16厘米,底面圆的周长为12厘米,=AB=16厘米,=12厘米,在中,即金丝的最短路线长是:20厘米故答案为:20【点睛】本题考查了平面展开最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径一般情况是两点之间,线段最短在平面图形上构造直角三角形解决问题三、解答题1、(1)BCDC+EC;见解析;(2)72【分析】(1)证明BADCAE,得出BD=CE,可得BC=DC+BD=DC+EC;根据全等三角形的性质可得ACE=B,得到DCE=90°,根据勾股定理计算即可;(2)作AEAD,使AE=AD,连接CE,DE,证明BADCAE,得到BD=CE=9,根据勾股定理计算即可【详解】(1)解:BCDC+EC,理由如下:BACDAE90°,BACDACDAEDAC,即BADCAE,在BAD和CAE中,BADCAE(SAS),BDEC,BCDC+BDDC+EC;故答案为:BCDC+EC;证明:RtABC中,ABAC,BACB45°,由(1)得,BADCAE,BDCE,ACEB45°,DCEACB+ACE90°,CE2+CD2ED2,在RtADE中,AD2+AE2ED2,又ADAE,BD2+CD22AD2;(2)解:如图2,过A作AEAD,使AEAD,连接CE,DE,EDA=45°,ABCACB45°,BAC=DAE=90°,BAC+CADDAE+CAD,即BADCAE,在BAD与CAE中,BADCAE(SAS),BDCE13,ADC45°,EDA45°,EDC90°,DE12,DAE90°,AD2+AE2DE2,AEAD,AD272【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、直角三角形的判定等知识;本题难度适中,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键2、(1),;AP2+BP2=PQ2;(2)见解析;(3)或【分析】(1)在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长,再利用SAS证明APCBQC,得出BQ=AP=,CBQ=A=45°,那么PBQ为直角三角形,依据勾股定理求出PQ=,即可得到PC;过点C作CDAB,垂足为D,由ACB为等腰直角三角形,可求得:CD=AD=DB,然后根据AP=DC-PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在RtPCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CDAB,垂足为D,则可证明AP2+BP2=2PC2,在RtPCQ中,PQ2=2CP2,可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PA、PD的长(用含有CD的式子表示),然后在RtACD和RtPCD中由勾股定理求得AC和PC的长度即可【详解】解:(1)如图连接BQ,ABC是等腰直角三角形,AC=4,AB=,PA=,PB=,ABC和PCQ均为等腰直角三角形,AC=BC,ACP=BCQ,PC=CQ,APCBQC(SAS)BQ=AP=,CBQ=A=45°PBQ为直角三角形PQ=,;故答案为:,;如图过点C作CDAB,垂足为DACB为等腰直角三角形,CDAB,CD=AD=DBAP2=(AD-PD)2=(DC-PD)2=DC2-2DCPD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DCPD+PD2,AP2+BP2=2CD2+2PD2,在RtPCD中,由勾股定理可知:PC2=DC2+PD2,AP2+BP2=2PC2CPQ为等腰直角三角形,2PC2=PQ2AP2+BP2=PQ2;故答案为:AP2+BP2=PQ2;(2)如图:过点C作CDAB,垂足为DACB为等腰直角三角形,CDAB,CD=AD=DBAP2=(AD+PD)2=(DC+PD)2=CD2+2DCPD+PD2,PB2=(DP-BD)2=(PD-DC)2=DC2-2DCPD+PD2,AP2+BP2=2CD2+2PD2,在RtPCD中,由勾股定理可知:PC2=DC2+PD2,AP2+BP2=2PC2CPQ为等腰直角三角形,2PC2=PQ2AP2+BP2=PQ2;(3)如图:过点C作CDAB,垂足为D点P位于点P1处时,P1AAB, ,在RtP1CD中,由勾股定理得: ,在RtACD中,由勾股定理得:,;当点P位于点P2处时,P2AABCD, ,在RtP2CD中,由勾股定理得: ,在RtACD中,由勾股定理得:,;综合上述,的值为:或【点睛】本题主要考查的是等腰直角三角形的性质和勾股定理的应用,以及全等三角形的判定和性质,正确作出辅助线,根据等腰直角三角形的性质得CD=AD=DB,将PA、PB、PQ、AC、PC用含DC的式子表示出来是解题的关键注意运用数形结合的思想和分类讨论的思想进行求解.3、(1)(2)见解析(3)见解析【分析】(1)利用等腰直角三角形的性质与勾股定理求出AB,故可求出CD;(2)设AD、BC交于O点,证明ABDCBE,再利用三角形的内角和得到CFO=ABO=90°,故可求解;(3)延长GE至H,令HE=GE,证明AHFCGF,得到H=G,AH=CG,再由ABDCBE得到AD=CE,故可得到AD=CG=AH,则FDA=H=CGF,即可求解【详解】解:(1)ABC和DBE都是以点B为顶点的等腰直角三角形BD=BE=1ABC = 90°AB=BCCD=BC-BD=;(2)设AD、BC交于O点ABC和DBE都是以点B为顶点的等腰直角三角形,ABC=DBE= 90°,AB=CB,DB=EB,ABC=DBE= 90°ABC+CBD=DBE+CBDABD=CBEABDCBE(SAS)OAB=OCFAOB=COFCFO=ABO=90°ADCE;(3)如图,延长GE至H,令HE=GEF点是AC中点AF=CE又HFA=GFCAHFCGFH=G,AH=CG由(2)同理可得ABDCBEAD=CECE=CGAD=CG=AHFDA=H=CGF 即FDA=CGF 【点睛】此题主要考查等腰三角形的性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理,根据图形的特点作辅助线求解4、(1)不正确,AB9(米);(2)(米)【分析】(1)设BGx米,则BC(261x)米,在RtBGC中,由勾股定理得x2+152(261x)2,解得x8,则ABBG+GA9(米),即可得出结论;(2)由题意得CFDE3米,则GFGC+CF18(米),在RtBGF中,再由勾股定理求出BF的长即可【详解】解:(1)不正确,理由如下:由题意得CGAB,AGCD1米,GCAD15米,设BGx米,则BC(261x)米,在RtBGC中,由勾股定理得:BG2+CG2CB2,即x2+152(261x)2,解得:x8,BG8米,ABBG+GA9(米),小敏的猜想不正确,立柱AB段的正确长度长为9米(2)由(1)得BG8米,GCAD15米,CFDE3米,GFGC+CF18(米),在RtBGF中,由勾股定理得:BG2+GF2BF2,BF (米)【点睛】本题考查了勾股定理的应用,做题的关键是用勾股定理的正确计算5、 (1)三角形如图所示,三边长分别为2、;(2)正方形如图所示【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长(2)作出边长为的正方形即可;【详解】(1)如图所示:很明显,且FM=2,又由题意可得:EM=,EF=;(2)如图所示,由题意可得:AB=BC=CD=DA=【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键