精品解析2022年人教版八年级数学下册第二十章-数据的分析章节训练试题(含解析).docx
-
资源ID:30751371
资源大小:124.74KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版八年级数学下册第二十章-数据的分析章节训练试题(含解析).docx
人教版八年级数学下册第二十章-数据的分析章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )参加人数平均数中位数方差甲4095935.1乙4095954.6A甲班的成绩比乙班的成绩稳定B甲班成绩优异的人数比乙班多C甲,乙两班竞褰成绩的众数相同D小明得94分将排在甲班的前20名2、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是( )A7B8C9D103、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )排名12345678910代表团山东广东浙江江苏上海湖北福建湖南四川辽宁金牌数A36B27C35.5D31.54、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是( )A平均数B中位数C众数D方差5、有一组数据:1,2,3,3,4这组数据的众数是( )A1B2C3D46、为庆祝中国共产党建党100周年,班级开展了以“学党史知识迎建党百年”为主题的党史知识竞赛,该班得分情况如下表:成绩(分)6570768092100人数25131173全班41名同学的成绩的众数和中位数分别是()A76,78B76,76C80,78D76,807、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A甲比乙稳定B乙比甲稳定C甲与乙一样稳定D无法确定8、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是( )A中位数B方差C平均数D众数9、某校随机抽查了10名学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12322下列说法正确的是( )A这10名同学的体育成绩的方差为50B这10名同学的体育成绩的众数为50分C这10名同学的体育成绩的中位数为48分D这10名同学的体育成绩的平均数为48分10、抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码):码号3334353637人数761511则鞋厂最感兴趣的是这组数据的( )A平均数B中位数C众数D方差第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,那么成绩较稳定的是_(填“甲”或“乙”)2、一组数据6、8、10、10,数据的众数是 _,中位数是 _3、已知一组数据由五个正整数组成,中位数是2,众数是2,且最大的数小于3,则这组数据之和的最小值是_4、为庆祝中国共产党建党一百周年,某单位党支部开展“学史明理,学史增信,学史崇德,学史力行”读书活动,学习小组抽取了七名党员5天的学史的时间(单位:h)分别为:4,3,3,5,6,5,5,这组数据的众数是_5、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的_,方差则反映一组数据在平均数左右的_,因此从平均数看或从方差看,各有长处三、解答题(5小题,每小题10分,共计50分)1、小明和小亮家去年的饮食、教育和其他支出都分别是18000元、6000元、36000元,小明家今年这三项支出依次比去年增长了10%,20%,30%,小亮家今年的这三项支出依次比去年增长了20%,30%,10%,小明和小亮家今年的总支出比去年增长的百分数相等吗?它们分别是多少?2、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A80x85,B85x90,C90x95,D:95x100)七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82八年级10名学生的成绩在C组中的数据是:94,90,92七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级bcd52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中 年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值:a ,b ,c ;d (3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x90)的人数3、教育局为了了解初三男生引体向上的成绩情况,随机抽测了本区部分学校初三男生,并将测试成绩绘成了如下两幅不完整的统计图请你根据图中的信息,解答下列问题:(1)写出扇形图中 ,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 个, 个;(3)该区初三年级共有男生2400人,如果引体向上达6个以上(含6个)得满分,请你估计该区男生的引体向上成绩能获得满分的有多少名?4、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖5、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:序号1号2号3号4号5号笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(1)这6名选手笔试成绩的众数是 分(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选-参考答案-一、单选题1、D【解析】【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可【详解】A乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定2、C【解析】【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可【详解】解:设报4的人心想的数是x,报1的人心想的数是10x,报3的人心想的数是x6,报5的人心想的数是14x,报2的人心想的数是x12,所以有x12x2×3,解得x9故选:C【点睛】此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解3、D【解析】【分析】根据中位数定义解答将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数【详解】解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,那么由中位数的定义可知,这组数据的中位数是故选D【点睛】本题为统计题,考查中位数的意义将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错4、D【解析】【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可【详解】解:由题意得:原来的平均数为,加入数字2之后的平均数为,平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,原数据的众数为2,新数据中2出现的次数最多,新数据的众数为2,故C选项不符合题意;原数据的方差为,新数据的方差为,方差发生了变化,故D选项符合题意;故选D【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义5、C【解析】【分析】找出数据中出现次数最多的数即可【详解】解:3出现了2次,出现的次数最多,这组数据的众数为3;故选:C【点睛】此题考查了众数众数是这组数据中出现次数最多的数6、D【解析】【分析】根据众数和中位数的定义,结合表格给出的数据,即可求出结果【详解】成绩为76分的有13人,人数最多,众数为76分,把41人的成绩按从小到大的顺序排列后,第21名的成绩为80分,中位数为:80分,故选:D【点睛】本题考查了众数和中位数,掌握众数和中位数的定义是解决本题的关键7、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,甲、乙制作的个数稳定性一样,故选:C【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键8、B【解析】【分析】根据方差的意义及平均数、众数、中位数的定义求解可得【详解】解:一组数据a,b,c,d,e的每一个数都加上同一数m(m0),则新数据am,bm,em的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义9、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可【详解】这组数据的平均数为×(46+47×2+48×3+49×2+50×2)48.2,故D选项错误,这组数据的方差为×(4648.2)2+2×(4748.2)2+3×(4848.2)2+2×(4948.2)2+2×(5048.2)21.56,故A选项错误,这组数据中,48出现的次数最多,这组数据的众数是48,故B选项错误,这组数据中间的两个数据为48、48,这组数据的中位数为48,故C选项正确,故选:C【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键10、C【解析】【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数【详解】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数故选:C【点睛】本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用二、填空题1、乙【解析】【分析】根据方差的意义进行判断即可,若两组数据的平均数相同,则方差小的更稳定【详解】平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,成绩较稳定的是乙故答案为:乙【点睛】本题考查了方差的意义,理解方差的意义是解题的关键2、 10 9【解析】【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数3、8【解析】【分析】将这组数据从小到大培训,处于中间位置的那个数是中位数即是2,众数则是数据中出现次数最多的数,根据题意计算即可;【详解】根据题意可得这组数据中由两个数为2,前面两个数为小于2的整数,均为1,又最大的数小于3,最后两个数均为2,可得这组数据和的最小值为;故答案是8【点睛】本题主要考查了中位数和众数的应用,准确计算是解题的关键4、5h【解析】【分析】根据众数的意义(出现次数最多的数据是众数)可得答案【详解】解:这组数据中出现次数最多的是5h,共出现3次,所以众数是5h,故答案为:5h【点睛】本题考查众数,理解众数的意义是解决问题的关键5、 一般水平 波动大小【解析】【分析】根据平均数和方差的意义进行回答即可【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键三、解答题1、小明家23%;小亮家15%【分析】由题意直接根据增长率=今年的增加的支出÷去年的支出总数列式进行计算即可判断【详解】解:小明家今年的总支出比去年增长的百分数为:;小亮家今年的总支出比去年增长的百分数为:答:小明和小亮家今年的总支出比去年增长的百分数不相等,分别为小明家23%,小亮家15%.【点睛】本题考查数据的分析-增长率的计算解题时要看准支出项目与增长的百分数之间的关系2、(1)八;(2)40;91.4;93;96;(3)840人【分析】(1)根据方差的意义求解即可;(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;(3)用总人数乘以样本中成绩优秀(x90)的八年级学生人数对应的百分比即可【详解】(1)七年级成绩的方差为52,八年级成绩的方差为50.4,八年级成绩的方差小于七年级成绩的方差,八年级成绩更平衡,更稳定;故答案为:八;(2)八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,a%=1-(20%+10%+30%)=40%,即a=40;七年级的平均数=将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,则这组数据的中位数七年级的成绩中96出现次数最多,所以众数d=96,故答案为:40;91.4;93;96;(3)估计参加此次调查活动成绩优秀(x90)的八年级学生人数是1200×(1-20%-10%)=840(人)【点睛】考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键3、(1)25%,补全的条形图见解析;(2)5,5;(3)该区引体向上的男生能获得满分的有1080名【分析】(1)根据扇形统计图可以求得a的值,根据扇形统计图和条形统计图可以得到做6个的学生数,从而可以将条形图;(2)根据(1)中补全的条形图可以得到众数和中位数;(3)根据统计图可以估计该区体育中考中选报引体向上的男生能获得满分的人数【详解】解:(1)由题意可得,a=1-30%-15%-10%-20%=25%,做6 个的学生数是60÷30%×25%=50,补全的条形图,如图所示,故答案为:25%;(2)由补全的条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5个;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(个),故答案为:5,5;(3)该区引体向上的男生能获得满分的有:2400×(25%+20%)=1080(名),即该区引体向上的男生能获得满分的有1080名【点睛】本题考查了条形统计图、扇形统计图、众数、中位数、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题4、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,甲队成绩的中位数是 分,乙队成绩中10出现了4次,出现的次数最多,乙队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队成绩的方差为乙队成绩的方差为,甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,乙队的成绩更加稳定,选择乙【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键5、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得,笔试成绩和面试成绩各占的百分比是40%,60%(3)2号选手的综合成绩是92×0.4+88×0.689.6(分),3号选手的综合成绩是84×0.4+86×0.685.2(分),4号选手的综合成绩是90×0.4+90×0.690(分),5号选手的综合成绩是84×0.4+80×0.681.6(分),6号选手的综合成绩是80×0.4+85×0.683(分)综合成绩排序前两名人选是4号和2号【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键