难点详解京改版九年级数学下册第二十四章-投影、视图与展开图定向练习试题(含详解).docx
-
资源ID:30756562
资源大小:552.19KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解京改版九年级数学下册第二十四章-投影、视图与展开图定向练习试题(含详解).docx
九年级数学下册第二十四章 投影、视图与展开图定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )ABCD2、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )ABCD3、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为()ABCD4、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2mn()A10B11C12D135、下列立体图形的主视图是()ABCD6、如图所示的几何体的左视图是( )ABCD7、如图是正方体的一种展开图,在原正方体上,与汉字“数”相对面上的汉字为()A感B悟C文D化8、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是()ABCD9、如图所示的几何体的主视图是()ABCD10、下列四个几何体中,主视图与俯视图不同的几何体是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥的母线长为5,侧面展开图的面积为20,则圆锥主视图的面积为_2、在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有_个3、用一个长方形的纸片按如图方式制作一个无盖的长方体盒子(在长方形的右边两个角上各剪去一个大小相同的正方形,左上角剪去一个长方形)设这个长方形的长为a,宽为b,折成的无盖长方体盒子高为c,若a7cm,b4cm,c1cm,则这个无盖长方体盒子的容积是_cm34、一个正方体的表面展开图如图所示,则与“你”字相对的面上的字是_5、日晷是我国古代测定时刻的仪器,它是利用_来测定时刻的三、解答题(5小题,每小题10分,共计50分)1、用小正方体搭成一个几何体,使得从正面看、从上面看该几何体得到的图形如图所示问: (1)这样的几何体只有一种吗?它最多需要多少个小正方体?(2)它最少需要多少个小正方体?请分别画出这两种情况下从左面看该几何体得到的图形2、根据要求完成下列题目(1)图中有_块小正方体(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影)(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要_个小正方体,最多要_个小正方体3、如图,是由若干个完全相同的小正方体组成的一个几何体(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图4、如图,是由一些棱长为1cm的小正方体组成的简单几何体(1)请直接写出该几何体的表面积(含下底面)为 (2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形5、如图是用六块相同的小立方体搭成的一个几何体,请你在下面相应的位置分别画出从正面、左面和上面观察这个几何体的视图(在答题卡上画完图后请用黑色水笔描黑)-参考答案-一、单选题1、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键2、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键3、C【分析】先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得【详解】解:由题意得:观察这个立体图形的正面如下:则它的俯视图为故选:C【点睛】本题考查了三视图,掌握理解俯视图的定义是解题关键4、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,m4+3+29,n4+2+17,2mn2×9711故选B【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数5、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图6、B【分析】根据左视图是从左面看到的图形判定则可【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线故选:B【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键7、D【分析】根据正方体展开图相对面的特点解答即可【详解】与汉字“数”相对面上的汉字为“化”,与汉字“悟”相对面上的汉字为“文”,与汉字“感”相对面上的汉字为“学”,故选D【点睛】正方体展开图相对面的确定方法:根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共边和公共顶点,即“对面无邻点”,以此来找相对面,也可亲自动手实践,观察了解图形的变化过程,找到相对面8、D【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看下边是一个矩形,矩形的上边是一个圆,故选:D【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键9、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,如图:故选:A【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键10、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意故选:C【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同二、填空题1、12【分析】圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=rl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可【详解】解:根据圆锥侧面积公式:S=rl,圆锥的母线长为5,侧面展开图的面积为20,故20=×5×r,解得:r=4由勾股定理可得圆锥的高圆锥的主视图是一个底边为8,高为3的等腰三角形,它的面积=,故答案为:12【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键2、12【分析】从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出碟子的层数和个数,从而算出总的个数【详解】解:由三视图可得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子故答案为:12【点睛】本题考查对三视图的理解应用及空间想象能力可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数3、8【分析】长方体的容积为长×宽×高,从题意求出分别求出长、宽、高即可【详解】解:无盖长方体盒子的高为c=1cm,AG=DF=1cm,AD=b-2c=4-2=2cm,BH=BC=AD=2cm,CD=a-c-BH=7-1-2=4cm,无盖长方体盒子的长为4cm,宽为2cm,高为1cm,这个无盖长方体盒子的容积为:4×2×1=8cm3,故答案为:8【点睛】本题考查列代数式,解题的关键是根据长方体的展开图,找出各条线段之间的关系,本题属于中等题型4、成【分析】利用正方体及其表面展开图的特点:正方体的平面展开图中相对的面一定相隔一个小正方形解题【详解】解:这是一个正方体的平面展开图,共有六个面,其中与“你”字相对的字是“成”故答案为:成【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题5、日影【分析】根据日晷的工作原理解答即可【详解】解:晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度故答案是:日影【点睛】本题考查了数学常识,此类问题要结合实际问题来解决,生活中的一些数学常识要了解三、解答题1、(1)不止一种,最多14个;(2)最小10个,画图见解析【分析】(1)由第2层的正方体的个数不同,可得这样的几何体不止一种,再在俯视图的基础上确定每层正方体的数量最多时的正方体的数量,从而可得答案;(2)在俯视图的基础上确定每层正方体的数量最小时的正方体的数量,从而可得答案.【详解】解: (1)这样的几何体不止一种,正方体最多时的俯视图为:其中正方形中的数字表示正方体的数量,所以最多需要6+6+2=14个; (2)最少需要4+4+2=10个,正方体个数最多时的左视图为:正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:【点睛】本题考查的是三视图,掌握三视图的定义,清晰的分类讨论是画图的关键.2、(1)6;(2)见解析;(3)5,7【分析】(1)根据图形知图形的层数及各层的块数,相加即得;(2)根据三视图的画法解答;(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个【详解】解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,图中共有1+2+3=6块小正方体,故答案为:6;(2)如图:(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,故答案为:5,7【点睛】此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键3、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况【详解】(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况【点睛】本题考查了几何体的三视图画法由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字4、(1)34 ;(2)见解析【分析】(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;(2)根据三视图的画法作图即可【详解】解:(1)每个小正方体的棱长为,每个小正方体的一个面的面积为,从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,露在外面的面一共有34个,该几个体的表面积为,故答案为:;(2)如图所示,即为所求;【点睛】本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解5、见详解【分析】观察立体图形画出三视图即可【详解】如图:【点睛】本题考查实物体的三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置