难点解析北师大版八年级数学下册第六章平行四边形专题测试试卷(无超纲).docx
-
资源ID:30759650
资源大小:534.75KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析北师大版八年级数学下册第六章平行四边形专题测试试卷(无超纲).docx
北师大版八年级数学下册第六章平行四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ACB90°,AC1,AB4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE,使CDEA,DE交BC于点F,则EF的长为()A3BCD3.52、n 边形的每个外角都为 15°,则边数 n 为( )A20B22C24D263、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD4、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD5、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对6、如图,在RtABC中,ACB90°,BAC30°,BC2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连CE,则CE的长不可能是()A1.2B2.05C2.7D3.17、如图,一张含有80°的三角形纸片,剪去这个80°角后,得到一个四边形,则1+2的度数是( )A200°B240°C260°D300°8、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为( )A4B6C8D109、如图,五边形ABCDE是正五边形,若l1l2,则12的值是( )A108°B36°C72°D144°10、若一个多边形的每一个内角均为120°,则下列说法错误的是( )A这个多边形的内角和为720°B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为360°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多边形的每个外角都为36°,则这个多边形的内角和是_°2、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _3、如图,点F在正五边形ABCDE的内部,ABF为等边三角形,则AFC等于_4、如图所示,在Rt中,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若,则的面积为_5、如图所示,在ABC中,BCAC,点D在BC上,DCAC10,且,作ACB的平分线CF交AD于点F,CF8,E是AB的中点,连接EF,则EF的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF2、如图,在ABC中,点A(3,1),B(1,1),C(0,3)(1)将ABC绕点O顺时针旋转90°,点A,B,C的对应点A1,B1,C1均落在格点上,画出旋转后的A1B1C1,并直接写出点A1,B1,C1的坐标;(2)将ABC绕点A旋转后,B,C对应点B2,C2均落在格点上,画出旋转后的AB2C2,并直接写出点B2,C2的坐标;(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,直接写该点的坐标为 3、ABC和GEF都是等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_4、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数5、如图,在正五边形ABCDE中,DFABF为垂足(1)求CDF的度数;(2)求证:AFBF-参考答案-一、单选题1、D【分析】根据勾股定理求出BC,根据直角三角形的性质得到CD=AD,证明ACDF,根据勾股定理计算,得到答案【详解】解:在RtABC中,ACB=90°,AC=1,AB=4,则BC=,在RtABC中,ACB=90°,点D是斜边AB的中点,CD=AB=AD,DCA=A,CDE=A,CDE=DCA,ACDF,EFC=ACB=90°,ACDF,点D是斜边AB的中点,DF=AC=,CF=BC=,设EF=x,则ED=x+=CE,在RtEFC中,EC2=EF2+CF2,即(x+)2=x2+()2,解得:x=3.5,即EF=3.5,故选:D【点睛】本题考查的是勾股定理、直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c22、C【分析】根据多边形的外角和等于360度得到15°n360°,然后解方程即可【详解】解:n边形的每个外角都为15°,15°n360°,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键3、C【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出4、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理6、D【分析】取AB的中点F,得到BCF是等边三角形,利用三角形中位线定理推出EF=BD=1,再分类讨论求得,即可求解【详解】解:取AB的中点F,连接EF、CF,BAC=30°,BC=2,AB=2BC=4,BF=FA=BC=CF=2,ABC=60°,BCF是等边三角形,E、F分别是AD、AB的中点,EF=BD=1,如图:当C、E、F共线时CE有最大值,最大值为CF+EF=3;如图,当C、E、F共线时CE有最小值,最小值为CF-EF=1;,观察各选项,只有选项D符合题意,故选:D【点睛】本题考查了等边三角形的判定和性质,三角形中位线定理,分类讨论求得CE的取值范围是解题的关键7、C【分析】三角形纸片中,剪去其中一个80°的角后变成四边形,则根据多边形的内角和等于360度即可求得1+2的度数【详解】解:根据三角形的内角和定理得:四边形除去1,2后的两角的度数为180°-80°=100°,则根据四边形的内角和定理得:1+2=360°-100°=260°故选:C【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°8、C【分析】先证明AEEC,再求解AD+DC8,再利用三角形的周长公式进行计算即可.【详解】解:平行四边形ABCD,ADBC,ABCD,OAOC,EOAC,AEEC,AB+BC+CD+AD16,AD+DC8,DCE的周长是:CD+DE+CEAE+DE+CDAD+CD8,故选:C【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AEEC是解本题关键.9、C【分析】过点B作l1的平行线BF,利用平行线的性质推出CBF+1=180°,CBF+2=108°,两个式子相减即可【详解】解:过点B作l1的平行线BF,则l1l2BF,l1l2BF,ABF=2,CBF+1=180°,五边形ABCDE是正五边形, ABF+CBF=CBF+2=108°,-得1-2=72°,故选C【点睛】本题主要考查了平行线的性质以及正多边形的内角问题,解题的关键是通过作辅助线,搭建角之间的关系桥梁10、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角和为,则选项A说法正确;多边形的外角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键二、填空题1、1440【分析】根据该多边形的每个外角都为36°可确定该多边形为正多边形,再根据多边形外角和定理可求出此正多边形的边数,然后根据多边形的内角和定理求出多边形的内角和【详解】解:此多边形每一个外角都为36°,该多边形为正多边形这个正多边形的边数为360°÷36°10这个多边形的内角和为(102)×180°1440°故答案为:1440【点睛】本题考查多边形的外角和定理,多边形的内角和定理,熟练掌握这些知识点是解题关键2、720°720度【分析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720°【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键3、126°【分析】根据等边三角形的性质得到AFBF,AFBABF60°,由正五边形的性质得到ABBC,ABC108°,等量代换得到BFBC,FBC48°,根据三角形的内角和求出BFC66°,根据AFCAFBBFC即可得到结论【详解】解:ABF是等边三角形,AFBF,AFBABF60°,在正五边形ABCDE中,ABBC,ABC108°,BFBC,FBCABCABF48°,BFC66°,AFCAFBBFC126°,故答案为:126°【点睛】本题考查了正多边形的内角和,等边三角形的性质,等腰三角形的性质,熟记正多边形的内角的求法是解题的关键4、3【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB根据勾股定理得出BC,求出,由中线的性质得,再根据中位线的性质可得结论【详解】解:E、F分别为MB、BC的中点,CM=2EF=5,ACB=90°,CM是斜边AB上的中线,AB=2CM=10,ACB=90°, CM是斜边AB上的中线,EF是的中位线, 故答案为:3【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键5、4【分析】根据等腰三角形的性质得到F为AD的中点,CFAD,根据勾股定理得到DF=6,根据三角形的中位线定理即可得到结论【详解】解:DC=AC=10,ACB的平分线CF交AD于F,F为AD的中点,CFAD,CFD=90°,DC=10,CF=8,DF=6,AD=2DF=12,BD=8,点E是AB的中点,EF为ABD的中位线,EF=BD=4,故答案为:4【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,勾股定理,证得EF是ABD的中位线是解题的关键三、解答题1、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.2、(1)图见解析,A1(-1,3),B1(1,-1),C1(3,0);(2)图见解析,B2(-1,-5),C2(1,-4);(3)D(1,)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可解决问题;(2)分别作出A,B,C的对应点A2,B2,C2即可解决问题;(3)画出图形,根据中点坐标计算写出即可【详解】(1)如图A1B1C1就是ABC绕点O顺时针旋转90°后的图形,A1(-1,3),B1(1,-1),C1(3,0);(2)如图:将ABC绕点A顺时针旋转90°后,由于B,C的对应点B2,C2均落在格点上,则AB2C2,是符合要求旋转后的图形, B2(-1,-5),C2(1,-4);(3)当线段B1C1绕点D(1,)旋转时,则B1C1与B2C2重合,如图,连接,可得,四边形为平行四边形,连接交于点D,点D为的中点,【点睛】本题考查旋转变换,平行四边形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明BCFACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FMBC于M,求出,即可推出,则,即:;法二:过F作,先证明FCNFCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;(3)如图3-1所示,连接,GM,AG,先证明ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQAB于Q,连接DG,求出DM和QG的长即可求解【详解】(1)ABC和GEF都是等边三角形,BC=AC,CF=CG,ACB=FCG=60°,ACB+ACF=FCG+ACF,FCB=GCA,BCFACG(SAS),BFC可以看作是AGC绕点C逆时针旋转60度所得;(2)法一:证明:以为边作,与的延长线交于点K,如图,和均为等边三角形,GFE=60°,EFH+ACB=180°, 是等边的中线,在与中, ,过点F作FMBC于M,KM=CM,K=30°,即:;法二证明:过F作,是等边的中线,FCNFCM(AAS),FC=2FN,CM=CN,同法一,在与中, ,;(3)如图3-1所示,连接,GM,AG,D,E分别是AB,AC的中点,DE是ABC的中位线,CDAB,DEBC,CDA=90°,ADE=ABC=60°,AED=ACB=60°,ADE是等边三角形,FDE=30°,DE=AE,GEF是等边三角形,EF=EG,GEF=60°,AEG=AED+DEG=FEG+DEG=FED,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,当M、G、P三点共线时,最小如图3-2所示,过点G作GQAB于Q,连接DG,QG=PG,MAP=60°,MPA=90°,AMP=30°,AM=2AP,D是AB的中点,AB=12,AD=BD=6,M是BD靠近B点的三等分点,MD=4,AM=10,AP=5,又PAG=30°,AG=2GP,【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解4、15【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案【详解】设新多边形是n边形,由多边形内角和公式得:,解得:,则原多边形的边数是:原多边形的边数是15【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式5、(1)54°;(2)见解析【分析】(1)首先根据正五边形的性质求出内角度数,以及推出AEDBCD,从而得到ADB为等腰三角形,即可结合“三线合一”的性质推出CDF=EDC,最终得出结论;(2)结合(1)中结论DA=DB,利用“HL”定理求证即可【详解】(1)解:五边形的内角和为,五边形ABCDE为正五边形,AE=ED=DC=CB,EAD=EDA=(180°-E)=36°,CDB=CBD=(180°-C)=36°,EDA=CDB,在AED和BCD中,AEDBCD(SAS),DA=DB,ADB为等腰三角形,DFAB,由“三线合一”知,DF平分ADB,BDF=ADF,BDF+CDB=ADF+EDA,CDF=EDF=EDC=54°;(2)由(1)得DA=DB,DFAB,DFA=DFB=90°,在RtDAF和RtDBF中,RtDAFRtDBF(HL),AF=BF【点睛】本题考查正多边形的性质,全等三角形的判定与性质以及等腰三角形的判定与性质等,掌握基本图形的判定方法和性质是解题关键