欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    知识点详解人教版八年级数学下册第十七章-勾股定理必考点解析试卷(名师精选).docx

    • 资源ID:30761026       资源大小:1.98MB        全文页数:37页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    知识点详解人教版八年级数学下册第十七章-勾股定理必考点解析试卷(名师精选).docx

    人教版八年级数学下册第十七章-勾股定理必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果线段能构成直角三角形,则它的比可能是( )ABCD2、如图,在三角形,是上中点,是射线上一点是上一点,连接,点在上,连接,则的长为( )AB8CD93、如图,在ABC中,BC2,C45°,若D是AC的三等分点(ADCD),且ABBD,则AB的长为( )ABCD4、如图,在4×4的正方形网格中,每个小正方形的边长均为1,点A,B,C都在格点上,ADBC于点D,则AD的长为()AB2CD35、如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将ABC折叠,点B与点A重合,折痕为DE,则DE的长为( )ABCD56、如图所示,在ABC中,C90°,AC2,点D在BC上,ADC2B,AD,则BC的长为()ABC2+D2+7、如图,RtABC中,ABC90°,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D,与AB的延长线交于点N,过D作DECN交CB的延长线于点P,交AN于点E,连接CE并延长交PN于点Q,则下列结论: ADP45°;ANCACP;DCED;NQCDPQ;CNDEEP,其中正确的结论有( )个A2B3C4D58、以下列各组线段为边作三角形,不能作出直角三角形的是( )A1,2,B6,8,10C3,7,8D0.3,0.4,0.59、如图,在等边ABC中,ADBC于D,延长BC到E,使CEBC,F是AC的中点,连接EF并延长EF交AB于G,BG的垂直平分线分别交BG,AD于点M,点N,连接GN,CN,下列结论:ACNBCN;GFEF;GNC120°;GMCN;EGAB,其中正确的个数是( )A2个B3个C4个D5个10、如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cmA15B20C18D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABD和ACE是ABC外两个等腰直角三角形,BADCAE90°下列说法正确的是:_(填序号)CDBE;DCBE;连结DE,则有DE2BC22BD2EC2;FA平分DFE2、如图,在四边形中,为的中点,于点,则四边形的面积为_3、如图,所有阴影四边形都是正方形,两个空白三角形均为直角三角形,且、三个正方形的边长分别为、,则正方形的面积为_4、如图,在一次夏令营活动中,小明从营地A出发,沿北偏东方向走了到达B地,然后再沿北偏西方向走了到达目的地C,则A、C两地之间的距离为_m5、如图,线段,点E、F为线段AB上两点从下面4个条件中:;,选择一个条件,使得和全等则所有满足的条件是_(填序号)三、解答题(5小题,每小题10分,共计50分)1、已知a,b,c是ABC的三边长,如果,试判断ABC的形状2、如图,已知三角形ABC中,B90°,将三角形ABC沿着射线BC方向平移得到三角形DEF,其中点A、点B、点C的对应点分别是点D、点E、点F,且CEDE(1)如图,如果AB4,BC2,那么平移的距离等于_;(请直接写出答案) (2)在第(1)题的条件下,将三角形DEF绕着点E旋转一定的角度(0°360°),使得点F恰好落在线段DE上的点G处,并联结CG、AG请根据题意在图中画出点G与线段CG、AG,那么旋转角等于_;(请直接写出答案)(3)在图中,如果ABa,BCb,那么此时三角形ACG的面积等于_;(用含a、b的代数式表示)(4)在第(3)小题的情况下,如果平移的距离等于8,三角形ABC的面积等于6,那么三角形ACG的面积等于_;(请直接写出答案)如果平移距离等于m,三角形ABC的面积等于n,那么三角形ACG的面积等于_(用含m、n的代数式表示,请直接写出答案)3、如图,在ABC和DEB中,ACBE,C90°,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结AE,若BC4,直接写出AE的长4、生态兴则文明兴,生态衰则文明衰“十三五”以来,青岛市坚持生态优先、绿色发展理念,持续改善生态环境如图现有施工遗留的一处空地,计划改造成绿地公园,已知A90°,ABAD3米,BC10米,CD8米,已知每平方米的改造费用为200元,请问改造该区域需要花费多少元?5、如图,在RtABC中,ACB90°,AB20cm,AC16cm,点P从点A出发,以每秒1cm的速度向点C运动,连接PB,设运动时间为t秒(t0)(1)当PBC的面积为ABC面积的一半时,求t的值;(2)当t为何值时,APPB-参考答案-一、单选题1、B【分析】根据勾股定理的逆定理,得:要能够组成一个直角三角形,则三边应满足:两条较小边的平方和等于最大边的平方【详解】解:A、1222542,故不是直角三角形故选项错误;B、52122169132,故是直角三角形,故选项正确;C、12321052,故不是直角三角形故选项错误;D、32429162572,故不是直角三角形故选项错误故选:B【点睛】考查了勾股定理的逆定理,要求能够熟练运用勾股定理的逆定理来判定一个三角形是否为直角三角形2、D【分析】延长EA到K,是的AK=AG,连接CK,先由勾股定理的逆定理可以得到ABC是等腰直角三角形,BAC=90°,ACB=ABC=45°,由BF=FE,得到FBE=FEB,设BFE=x,则,然后证明CB=FC=FE,得到FBC=FCA,AFB=AFC则,即可证明,推出;设,证明ABGACK,得到,即可推出ECK=K,得到EK=EC,则,由此即可得到答案【详解】解:延长EA到K,是的AK=AG,连接CK,在三角形,ABC是等腰直角三角形,BAC=90°,ACB=ABC=45°,BF=FE,FBE=FEB,设BFE=x,则,H是BC上中点,F是射线AH上一点,AHBC,AH是线段BC的垂直平分线,FAC=45°,CB=FC=FE,FBC=FCA,AFB=AFC,设,AG=AK,AB=AC,KAC=GAB=90°,ABGACK(SAS),ECK=K,EK=EC,故选D【点睛】本题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识是解题的关键3、B【分析】作BEAC于E,根据等腰三角形三线合一性质可得AE=DE,根据C45°,得出EBC=180°-C-BEC=180°-45°-90°=45°,可得BE=CE,利用勾股定理求出CE=BE=2,根据D是AC的三等分点得出AE=DE=CD,求出CD=1,利用勾股定理即可【详解】解:作BEAC于E,ABBD,AE=DE,C45°,EBC=180°-C-BEC=180°-45°-90°=45°,BE=CE, 在RtBEC中,CE=BE=2,D是AC的三等分点,CD=,AD=AC-CD=,AE=DE=CD,CE=CD+DE=2CD=2,CD=1,AE=1,在RtABE中,根据勾股定理故选B【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键4、B【分析】首先由勾股定理得AB,AC,BC的三边长,从而有AB2+AC2BC2,得BAC90°,再根据SABC,代入计算即可【详解】解:由勾股定理得:AB,AC,BC,AB2+AC225,BC225,AB2+AC2BC2,BAC90°,SABC,AD2,故选:B【点睛】本题主要考查了勾股定理,通过勾股定理计算出三边长度,判断出BAC90°是解题的关键5、B【分析】由翻折易得DB=AD,根据勾股定理即可求得CD长,再在RtBDE中,利用勾股定理即可求解【详解】解析:由折叠可知,AD=BD,DEAB, BE=AB设BD为x,则CD=8-x,C=90°,AC=4,BC=8,AC2+BC2=AB2 AB2=42+82=80,AB=,BE=,在RtACD中,AC2+CD2=AD2 ,42+(8-x)2=x2,解得x=5,在RtBDE中,BE2+DE2=BD2,即()2+DE2=52,DE=, 故选:B【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟记翻折前后对应边相等是解题的关键6、B【分析】根据ADC2B,ADCB+BAD判断出DBDA,根据勾股定理求出DC的长,从而求出BC的长【详解】解:ADC2B,ADCB+BAD,BDAB,BDAD,在RtADC中,C90°,DC,BCBD+DC故选:B【点睛】本题考查了等角对等边,勾股定理,求得是解题的关键7、B【分析】根据角平分线的定义,可得 ,再由三角形外角的性质,可得 ,再由DECN,可得ADP=45°;延长PD与AC交于点 ,可证得 ,从而得到 ;然后根据ADCADE,可得DC=ED;根据题意可得CQPN,且CDE、CQN、PQE均为等腰直角三角形,从而得到CQPNQE,进而得到 ;作EKCE交CN于点K,可得CEK是等腰直角三角形,从而得到CD=DK,CK=2CD,进而得到EKNCEP,从而得到PE=KN,得到CN= 2DE+EP,即可求解【详解】解:如图,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D, ,HCD=DAC+ADC,PCH=CAB+ABC=2HCD, ,DECN,CDP=90°,ADP=45°,故正确;如图,延长PD与AC交于点 ,1=PCD,DECN, , ,ADC=45°,DPCN,EDA=CDA=45°, , , ,故正确;在ADC和ADE中,ADC=ADE=45°,AD=AD,DAC=DAE,ADCADE(ASA),DC=ED,故正确;ABC=90°,BNCP,DECN,E为CPN垂心,CQPN,且CDE、CQN、PQE均为等腰直角三角形,PQC=EQN=90°,PQ=EQ,CQ=NQ, ,CQPNQE(SAS),CQ=NQ,CQ=EQ+CE=PQ+CE=PQ+CD,PEQ=45°, ,故错误;如图,作EKCE交CN于点K,CDE为等腰直角三角形,DCE=45°,CKE=45°,CE=EK,CEK是等腰直角三角形,CD=DK,CK=2CD,KNE+PCN=CPE+PCN=90°,KNE=CPE,PEQ=CKE=45°,CEP=EKN=135°,在EKN和CEP中,EKN=CEP,KNE=CPE,CE=EK,EKNCEP(AAS),PE=KN,CN=CK+KN=2CD+EP,CN=CK+KN=2DE+EP,故错误正确的有,有3个故选:B【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识,熟练掌握全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识是解题的关键8、C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可【详解】解:A、,以1,2,为边的三角形是直角三角形,故本选项不符合题意;B、62+82=36+64=100=102,以6,8,10为边的三角形是直角三角形,故本选项不符合题意;C、32+72=9+49=5882,以3,7,8为边的三角形不是直角三角形,故本选项符合题意;D、0.32+0.42=0.09+0,16=0.25=0.52,以0.3,0.4,0.5为边的三角形是直角三角形,故本选项不符合题意;故选:C【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形9、B【分析】由是等边三角形,不是中点可判断;根据等边三角形的性质和三角形外角的性质得,由可判断;设,则,表示和的长可判断;作辅助线,构建三角形全等,先根据角平分线的性质得,由线段垂直平分线的性质得,证明,可判断【详解】解:是等边三角形,是的垂直平分线不是中点,N点不在ACB的角平分上,CN不平分ACB,故错误;是等边三角形,是的中点,故正确;设,则,在中,故正确;如图,过作于,连接,在等边中,平分,是的垂直平分线,在中,故错误;在和中,故正确故选:B【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、垂直平分线的性质、含30°角的直角三角形的性质等知识;熟练掌握勾股定理和等边三角形的性质,证明三角形全等是解题的关键10、A【分析】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CEDH于点E,则BC就是蚂蚁到达蜂蜜的最短距离,根据勾股定理即可求得BC的长【详解】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CEDH于点E,如图所示:则DB=AD=4cm,由题意及辅助线作法知,M与N分别为GH与DF的中点,且四边形CMHE为长方形,CE=MH=9cm,EH=CM=4cm,DE=DHEH=124=8cm,BE=DE+DB=8+4=12cm ,在RtBEC中,由勾股定理得:,即蚂蚁到达蜂蜜的最短距离为 15cm,故选;:A【点睛】本题考查了勾股定理,两点间线段最短,关键是把空间问题转化为平面问题解决,这是数学上一种重要的转化思想二、填空题1、【分析】由条件可证明ADCABE,可得到CD=BE;设BE和AC交于点R,可知AEB=ACD,结合对顶角和三角形内角和定理,可得到EFC=90;由勾股定理可得DE2+BC2=BD2+CE2;分别过A作ASDC,AGBE,由全等可证得AS=AG,根据角平分线的判定可得到FA平分 DFE【详解】解:ABD和ACE为等腰直角三角形,AD=AB,AC=AE,DAB=EAC,DAC=EAB,AD=AB,AC=AE,(SAS),CD=BE,故符合题意;设BE交AC于点R,如图,由(1)可知AEB=ACD,且ARE=FRC,AER+ARE=FCR+FRC,EFC=EAR=90,即DCBE,故符合题意;DCBE,DF2+EF2=DE2,BF2+CF2=BC2,DF2+EF2+BF2+CF2=DE2+BC2,且DF2+BF2=BD2,CF2+EF2=CE2,DE2+BC2=BD2+CE2,故不符合题意证明:如图2,分别过A作ASDC,AGBE,由(1)可知ADS=ABG,且AD=AB,ASD=AGB,ADSABG(AAS),AS=AG,且ASDC,AGBE,FA平分DFE,故符合题意;故答案为:【点睛】本题是三角形综合题,主要考查全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,能利用图形性质找到边与边之间的关系是本题的关键2、#【分析】连接BD,先求出BD的长,再根据勾股定理的逆定理得出BCD是直角三角形,进而利用三角形的面积公式解答即可【详解】解:连接,为的中点,DE是AB的垂直平分线, ,是直角三角形,四边形的面积,故答案为:【点睛】此题考查了勾股定理及勾股定理的逆定理,关键是根据勾股定理的逆定理得出BCD是直角三角形解答3、45【分析】设正方形A,B,C,D的边长分别为a,b,c,d,根据勾股定理得,然后代入计算即可【详解】解:设正方形A,B,C,D的边长分别为a,b,c,d,根据勾股定理得,正方形A、B、C的面积依次为4、16、25,根据图形得:41625,解得:45,故答案为:45【点睛】本题主要考查了勾股定理的应用,掌握勾股定理是解题的关键4、100【分析】根据题意点C位于点B的西偏北60方向,再根据平行线的性质可得点A位于点B的西偏南30方向,从而可得ABBC,由勾股定理即可求得AC的长【详解】如图所示,CBH=30,DAB=60BAE=90DAB=30,CBF=90CBH=60FBAEFBA=BAE=30ABC=CBF+FBA=60+30=90在RtABC中,由勾股定理得:故答案为:100【点睛】本题主要考查了勾股定理的应用,关键是知道方位角的含义并得出ABC是直角三角形5、【分析】条件利用SSA不能证明全等;条件可以用SAS证明两个三角形全等;条件先证明,再利用AAS即可证明;条件可利用AAS证明两个三角形全等【详解】解:如图1,过C作于M,过D作于N,和是等腰直角三角形,符合条件的E和F在线段AB上各有两个点,如图1,不一定和全等,故不符合题意;如图2,在和中,故符合题意;如图3,过C作于M,过D作于N,由知,且,E和F在线段AB上各存在一个点,在和中,在和中,故符合题意;如图4,在和中,故符合题意故答案为:【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件三、解答题1、直角三角形,理由见解析【分析】根据非负数的性质求得a、b、c的值,利用勾股定理的逆定理即可判断三角形ABC的形状【详解】解:ABC是直角三角形理由:, , ,是以a为斜边的直角三角形;【点睛】本题考查了配方法的应用及非负数的性质和勾股定理的逆定理,解题的关键是利用非负数的性质确定三个未知数的值2、(1)6;(2)见解析,90°或者270°;(3);(4)20;【分析】(1)根据平移的性质可得DE=AB=4,再由CE=DE,则CE=4,即可得到BE=CE+BC=6;(2)由平移的性质可得DEF=B=90°,则当DEF绕点E顺时针旋转270°时,点F落在DE上的G点处,当DEF绕点E逆时针旋转90°时,点F落在DE上的G点处;(3)由平移和旋转的旋转的性质可得:BAC=ECG,AC=CG=DF,然后证明ACG=90°,得到,再由,即可得到,(4)由平移的距离等于8,可推出a+b=8,由三角形ABC的面积等于6,可得,则;同理当平移距离为m时,三角形ACG面积为n时,a+b=m,可得【详解】解:(1)由平移的性质可知:DE=AB=4,CE=DE,CE=4,BE=CE+BC=6,平移距离为6,故答案为:6;(2)如图所示,点G,AG,CG即为所求;由平移的性质可得DEF=B=90°,当DEF绕点E顺时针旋转270°时,点F落在DE上的G点处,当DEF绕点E逆时针旋转90°时,点F落在DE上的G点处,旋转角=90°或270°;故答案为:=90°或270°(3)由平移和旋转的旋转的性质可得:BAC=ECG,AC=CG=DF,B=90°,ACB+ABC=90°,ACB+ECG=90°,ACG=90°,又,故答案为:;(4)平移的距离等于8,CE+BC=8,即AB+BC=8,a+b=8,三角形ABC的面积等于6,;同理当平移距离为m时,a+b=m,三角形ABC的面积等于n,;故答案为:20;【点睛】本题主要考查了平移的性质,勾股定理,完全平方公式的变形求值,解题的关键在于鞥个熟练掌握相关知识进行求解3、(1)见解析;(2)【分析】(1)根据平行可得DBE90°,再由HL定理证明直角三角形全等即可;(2)构造,利用矩形性质和勾股定理即可求出AE长【详解】(1)ACBE,CDBE180°DBE180°C 180°90°90°ABC和DEB都是直角三角形点D为BC的中点,ACDB ABDE,RtABCRtDEB(HL) (2)过程如下:连接AE、过A点作AHBE,C90°,DBE90°,AH=BC=4, ,在中,【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH=BC,从而利用勾股定理求AE4、改造该区域需要花费6600元【分析】连接,利用勾股定理求出的长,再利用勾股定理的逆定理证明,从而解决问题【详解】解:如图,连接,在中,由勾股定理得,(米,(平方米),(元,改造该区域需要花费6600元【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键是作辅助线构造直角三角形5、(1)8;(2)12.5;【分析】(1)根据勾股定理解答即可;(2)设APt,利用勾股定理列出方程解答即可【详解】解:(1)在RtABC中,ACB90°,AB20cm,AC16cm,BC(cm);PBC的面积为ABC面积的一半× 12×(16 - t ) =× × 12 × 16解得:t = 8所以当PBC的面积为ABC面积的一半时,t的值为8;(2)设APt,则PC16t,在RtPCB中,PCB90°,由勾股定理,得:PC2+BC2PB2,即(16t)2+122t2,解得:t12.5,当点P运动到PAPB时,t的值为12.5【点睛】考查了勾股定理,此题难度不大,注意掌握数形结合思想的应用

    注意事项

    本文(知识点详解人教版八年级数学下册第十七章-勾股定理必考点解析试卷(名师精选).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开