欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    最新人教版九年级数学下册第二十八章-锐角三角函数综合练习试卷.docx

    • 资源ID:30762635       资源大小:872.50KB        全文页数:36页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新人教版九年级数学下册第二十八章-锐角三角函数综合练习试卷.docx

    人教版九年级数学下册第二十八章-锐角三角函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若tanA=2,则A的度数估计在( )A在0°和30°之间B在30° 和45°之间C在45°和60°之间D在60°和90°之间2、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米3、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形4、如图,河坝横断面迎水坡的坡比为:,坝高m,则的长度为( )A6mBmC9mDm5、如图,在ABC中,C90°,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB6、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°0.6,cos35°0.8,tan35°0.7,sin65°0.9,cos65°0.4,tan65°2.1)()A3.2米B3.9米C4.7米D5.4米7、如图,在小正方形网格中,的三个顶点均在格点上,则的值为( )ABCD8、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D9、如图,在ABC中,C=90°,BC=5,AC=12,则tanB等于( )ABCD10、如图,ACB60,半径为1的O切BC于点C,若将O在直线CB上沿某一方向滚动,当滚动到O与CA也相切时,圆心O移动的水平距离为( )ABC 或D或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、_2、如图,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,则图1中cosAOB_,若圆O半径为,则图2中BCD的面积为_3、_4、如图,在以AB为直径的半圆O中,C是半圆的三等分点,点P是弧BC上一动点,连接CP,AP,作OM垂直CP交AP于N,连接BN,若AB12,则NB的最小值是_5、如图,菱形ABCD中,ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到A1D1A2按此规律,得到A2020D2020A2021,记ADA1的面积为S1,A1D1A2的面积为S2,A2020D2020A2021的面积为S2021,则S2021=_三、解答题(5小题,每小题10分,共计50分)1、如图,点A、B在以CD为直径的O上,且,BCD=30°(1)判断ABC的形状,并说明理由;(2)若BC=cm,求图中阴影部分的面积2、平面直角坐标系中,过点M的O交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点,交OM的反向延长线于点N(1)求经过A、N、B三点的抛物线的解析式(2)如图,点E为(1)中抛物线的顶点,连接EN,判断直线EN与O的位置关系,并说明理由(3)如图,连接MD、BD,过点D的直线交抛物线于点P,且,直接写出直线DP的解析式3、如图,在ABC中,B30°,BC40cm,过点A作ADBC,垂足为D,ACD75°(1)求点C到AB的距离;(2)求线段AD的长度4、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为ykx12(k0),ACBC,线段OA的长是方程x215x160的根请解答下列问题:(1)求点A、点B的坐标(2)若直线l经过点A与线段BC交于点D,且tanCAD,双曲线y(m0)的一个分支经过点D,求m的值(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与ABC相似若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由5、在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60km/h,并在离该公路100m处设置一个检测点A在如图所示的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在A的北偏东45°方向上,另外一条高速公路在y轴上,AO为其中的一段(1)一辆汽车从点B匀速行驶到点C所用的时间是15s,通过计算,判断该汽车在这段限速公路上是否超速(参考数据:1.7);(2)若一辆大货车在限速公路上由C处向西行驶,一辆小汽车在高速公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离-参考答案-一、单选题1、D【分析】由题意直接结合特殊锐角三角函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.2、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边3、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解4、A【分析】根据迎水坡的坡比为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键5、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90°,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键6、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65°,OFxtan65°,BF3+x,tan35°,OF(3+x)tan35°,2.1x0.7(3+x),x1.5,OF1.5×2.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键7、A【分析】观察题目易知ABC为直角三角形,其中AC3,BC4,求出斜边AB,根据余弦的定义即可求出【详解】解:由题知ABC为直角三角形,其中AC3,BC4,AB=5,故选:A【点睛】本题考查解直角三角形知识,熟练掌握锐角三角函数的定义并能在解直角三角形中的灵活应用是解题的关键8、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.9、B【分析】根据锐角三角函数求解即可【详解】解:在RtABC中,C90°,BC5,AC12,所以tanB,故选:B【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键10、D【分析】当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OCFW是矩形,然后根据锐角三角函数的知识求解;同理求出另一种情况的值【详解】解:如图1,当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OCFW是矩形,OW=CF,WF=1,ACB60,WCF=ACB=30°,所以点O移动的距离为OW=CF=如图2,当圆O滚动到圆O位置与CA,CB相切,切点分别为F,E,连接OO,OE,OC,OF,OC,则四边形OCEO是矩形,OO=CE,ACB60,ACE120,OCE=60°,点O移动的距离为OO=CE=,·故选:D【点睛】此题考查了切线的性质与切线长定理,矩形的判定与性质,以及三角函数等知识解此题的关键是根据题意作出图形,注意数形结合思想的应用二、填空题1、【解析】【分析】根据特殊角的三角函数值代入计算求解即可【详解】解:原式故答案为:【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值,以及实数的混合运算法则是解题关键2、 ; 【解析】【分析】连接OP,根据题意,得到PB=PO=AP,从而得到BPO=150°,BOP=15°,AOP=60°,故AOB=45°,根据特殊角的函数值计算即可;如图2,连接GD,GE,可得GD是圆的直径,从而得到GED=90°,根据DEGH,得到EGH=90°,根据EGH+CGH =180°,得到C,G,E三点共线,CG边上的高就是DE;连接BF,CF,得到BFE=45°,CFG=15°,GFE=120°,计算CFE=135°,根据CFE+BFE =180°,得到C,F,B三点共线,于是=+,根据半径等于正方形的边长等于等边三角形的边长,依次计算求和即可【详解】连接OP,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,PB=PO=AP,BPO=150°,BOP=15°,AOP=60°,AOB=45°,cosAOB= cos45°=,故答案为:;如图2,连接GD,GE,BF,CF,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,BFE=45°,CGF=150°,EF=FG=GH=HM=DM=DE,GFE=FED=EDM=DMH=MHG=HGF=120°,六边形EFGHMD是正六边形,GC=GF,CFG=15°,GFE=120°,CFE=135°,CFE+BFE =180°,C,F,B三点共线,根据正六边形的性质,得GD是圆的直径,GED=90°,DEGH,EGH=90°,EGH+CGH =180°,C,G,E三点共线,CG边上的高就是DE;=+,根据正六边形的性质,得半径等于正方形的边长等于等边三角形的边长, =1,过点F作FNEG,垂足为N,FGN=30°,FN=, =,=1,=3=,=1+1+=,故答案为:【点睛】本题考查了正多边形与圆,等边三角形的性质,特殊角的函数值,熟练掌握正六边形的判定和性质,学会分割法计算图形的面积是解题的关键3、5【解析】【分析】原式分别根据绝对值,有理数的乘方,二次根式以及特殊角三角函数值化简各项后,再进行加减运算即可得到答案【详解】解:=5【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则及特殊角三角函数值是解答本题的关键4、221-23#-23+221【解析】【分析】如图,连接AC,OC证明点N在T上,运动轨迹是OC ,过点T作THAB于H求出BT,TN,可得结论【详解】解:如图,连接AC,OCC是半圆的三等分点,AOC60°,OAOC,AOC是等边三角形,作AOC的外接圆T,连接TATC,TN,TBOMPC,CMPM,NCNP,NPCNCPAOC30°,CNM60°,CNO120°,CNOOAC180°,点N在T上,运动轨迹是OC,过点T作THAB于H在RtATH中,AHOH3,TAH30°,THAHtan30°,ATTN2HN2,在RtBHT中,BTTH2+BH2=32+92=221,BNBTTN,BN221-23,BN的最小值为221-23故答案为:221-23【点睛】本题考查点与圆的位置关系,等边三角形的判定和性质,解直角三角形,轨迹等知识,解题的关键是正确寻找点N的运动轨迹,属于中考填空题中的压轴题5、240383#3·24038【解析】【分析】由题意得BCD=60°,AB=AD=CD=1,则有ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,进而根据等边三角形的面积公式可得S1=34,S2=3,.由此规律可得Sn=322n-4,即可求解【详解】解:四边形是菱形,AB=AD=CD=1,ADBC,ABCD,ABC=120°,BCD=60°,ADA1=BCD=60°,DA1=CD,DA1=AD,ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,过点B作BECD于点E,如图所示:BE=BCsinBCD=32,S1=12A1DBE=34A1D2=34,同理可得:S2=34A2D12=34×22=3,S3=34A3D22=34×42=43,;由此规律可得:Sn=322n-4,S2021=3×22×2021-4=240383;故答案为:240383【点睛】本题考查了菱形的性质,等边三角形的性质与判定及三角函数,解题的关键是熟练掌握以上知识点三、解答题1、(1)ABC是等边三角形,理由见解析;(2)()cm2【解析】【分析】(1)由垂直定义得,由垂径定理得,由三角形内角和定理得,从而可判断ABC的形状;(2)连接BO、过O作OEBC于E,由垂径定理可得出BE的长,根据圆周角定理可得出BOC的度数,在RtBOE中由锐角三角函数的定义求出OB的长,根据S阴影=S扇形-SBOC即可得出结论【详解】解:(1)ABC是等边三角形,理由如下:,BCD=30°, ABC是等边三角形;(2)连接BO,过O作OEBC于E,BC=cm,BE=EC=cm,BAC=60°,BOC=120°,BOE=60°,在RtBOE中,OB=6cm,S扇形=cm2,cm2,S阴影=cm2,答:图中阴影部分的面积是()cm2【点睛】本题考查的是圆周角定理、垂径定理及扇形的面积等相关知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键2、(1);(2)直线EN与O相切,理由见解析;(3)或【解析】【分析】(1)结合题意,根据圆和勾股定理的性质,计算得圆的半径,从而得,;根据抛物线轴对称的性质,得经过A、N、B三点的抛物线,对称轴为:;通过列二元一次方程组并求解,即可得到答案;(2)根据抛物线的性质,计算得;根据勾股定理的性质,得,;根据圆的性质,得;根据勾股定理的逆定理,通过,推导得,结合圆的切线的定义,即可得到答案;(3)结合(2)的结论,根据特殊角度三角函数的性质,得,分当点P纵坐标大于0和小于0两种情况,根据圆周角、圆心角的性质,推导得;根据含角直角三角形和勾股定理的性质,计算得点坐标,再通过待定系数法求解一次函数解析式,即可得到答案【详解】(1)O过点M O交x轴于A、B两点(点A在点B的左侧), , 经过A、N、B三点的抛物线,对称轴为: O交OM的反向延长线于点N 设经过A、N、B三点的抛物线为: 经过A、N、B三点的抛物线,对称轴为: 经过A、N、B三点的抛物线为:;(2)经过A、N、B三点的抛物线为:,且对称轴为:当时,抛物线取最小值,即 , 直线EN与O相切;(3) 如图,当点P纵坐标大于0时,直线交O于点Q,连接,过点Q作,交OB于点K , 设直线DP的解析式为: ;如图,当点P纵坐标小于0时,直线交O于点Q,连接,过点Q作,交OB于点K, 设直线DP的解析式为: ;直线DP的解析式为:或【点睛】本题考查了圆、二次函数、一次函数、勾股定理、直角三角形、轴对称、三角函数的知识;解题的关键是熟练掌握圆的对称性、圆周角、圆心角、二次函数图像、勾股定理及其逆定理、切线、特殊角度三角函数的性质,从而完成求解3、(1)20cm;(2)【解析】【分析】(1)过C点作CHAB于H,如图,在RtBCH中,利用含30°的直角三角形三边的关系易得CHBC20;(2)在RtBCD中利用含30°的直角三角形三边的关系可得CH20,BHCH20,再利用三角形外角性质计算出BAC45°,则ACH为等腰直角三角形,所以AHCH20,然后利用面积法求AD【详解】解:(1)过C点作CHAB于H,如图,在RtBCH中,B30°,CHBC×4020cm,即点C到AB的距离为20cm;(2)在RtBCH中,B30°,CH20cm,BHCH20cm,ACDB+BAC,BAC75°30°45°,ACH为等腰直角三角形,AHCH20cm,AB(20+20)cm,ADBCCHAB,AD(10+10)cm【点睛】本题主要考查了含30°直角三角形的性质 、解直角三角形、三角形的外角以及三角形的面积等知识点,正确作出辅助线、构造直角三角形成为解答本题的关键4、(1)A(16,0),B(-9,0);(2)-24;(3)存在,(16,12)或(25,12)或(32,)或()【解析】【分析】(1)解一元二次方程x215x160,对称点A(16,0),根据直线BC的解析式为ykx12,求出与y轴交点C为(0,12),利用三角函数求出tanBCO= tanOAC=,求出OB=即可;(2)过点D作DEy轴于E,DFx轴于F,利用勾股定理求出AC=,BC=,根据三角函数求出tanCAD,求出,利用三角函数求出DE= CDsinBCO=,再利用勾股定理求出点D(-3,8)即可;(3)过点A作AP1与过点C与x轴平行的直线交于P1,先证四边形COAP1为矩形,求出点P1(16,12),再证P1CACAB,作P2AAC交CP1延长线于P2,可得CAP2=BCA=90°,P2CA=CAB,可证CAP2ACB,先求三角函数值cosCAO=,再利用三角函数值cosP2CA= cosCAO=,求出,得出点P2()作P3CA=OCA,在射线CP3截取CP3=CO=12,连结AP3,先证CP3ACOA(SAS)再证P3CACAB,设P3(x,y)利用勾股定理列方程,解方程得出点P3(),延长CP3与延长线交P4,过P4作PHx轴于H,先证CAP4ACB,再证P4P3AP4HA(ASA),利用cosP3CA=,求得即可【详解】解:(1)x215x160,因式分解得,解得,点A在x轴的正半轴上,OA=16,点A(16,0),直线BC的解析式为ykx12,与y轴交点C为(0,12),tanOAC=,OCA+OAC=90°,ACBC,BCO+OCA=90°,BCO=OAC,tanBCO= tanOAC=,OB=,点B(-9,0);(2)过点D作DEy轴于E,DFx轴于F,在RtAOC中,AC=,在RtBOC中BC=,tanCAD,sinBCO=,DE= CDsinBCO=,CE=,OE=OC-EC=12-4=8,点D(-3,8),双曲线y(m0)的一个分支经过点D,;(3)过点A作AP1与过点C与x轴平行的直线交于P1,则CP1A=P1CO=COA=90°,四边形COAP1为矩形,点P1(16,12),当点P1(16,12)时,CP1OA,P1CA=CAB,ACB=CP1A,P1CACAB,作P2AAC交CP1延长线于P2,CAP2=BCA=90°,P2CA=CAB,CAP2ACB,cosCAO=,cosP2CA= cosCAO=,点P2的横坐标绝对值=,纵坐标的绝对值=OC=12,点P2(),作P3CA=OCA,在射线CP3截取CP3=CO=12,连结AP3,在CP3A和COA中,CP3ACOA(SAS),AP3=OA=16,P3CACAB,设P3(x,y),整理得,解得:,点P3(),延长CP3与延长线交P4,过P4作PHx轴于H,P4CA=CAB,P4AC=BAC=90°,CAP4ACB,BAC+HAP4=CAP3+P3AP4=90°,CAP3=BAC,HAP4=P3AP4,P4P3A=180°-CP3A=180°-90°=90°=P4HA,在P4P3A和P4HA中,P4P3AP4HA(ASA),AP3=AH=16,P3P4=P4H,cosP3CA=,OH=OA+AH=OA+AP3=16+16=32,点,综合直线CB下方,使以C、A、P为顶点的三角形与ABC相似点P的坐标(16,12)或()或或()【点睛】本题考查一元二次方程的解法,直线与y轴的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键5、(1)汽车在这段限速路上超速(2)20米【解析】【分析】(1)根据解直角三角形的方法求BC的长,然后比较;(2)求两车在匀速行驶过程中的最近距离可以转化为求函数的最值问题,故可求解【详解】解:(1)在RtAOB中,OA100,BAO60°,OBOAtanBAO100米RtAOC中,CAO45°,OCOA100米BCBOOC100100米,18m/s60km/h16.7 m/s汽车在这段限速路上超速了(2)设大货车行驶了x米,两车的距离为y当x60米时,y有最小值20米答:两车在匀速行驶过程中的最近距离为20米【点睛】此题主要考查解直角三角形的实际应用于二次函数的最值,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线

    注意事项

    本文(最新人教版九年级数学下册第二十八章-锐角三角函数综合练习试卷.docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开