精品试题北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含答案解析).docx
-
资源ID:30765061
资源大小:1,005.41KB
全文页数:32页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试题北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含答案解析).docx
九年级数学下册第一章直角三角形的边角关系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形的底边长,周长,则底角的正切值为( )ABCD2、如图,在ABC中,C=90°,BC=5,AC=12,则tanB等于( )ABCD3、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形4、如图,在ABC中,C90°,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB5、的值为( )A1B2CD6、的倒数是( )ABC2D7、在ABC中,ACB90°,AC1,BC2,则sinB的值为()ABCD8、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB10,BE3,则AB在直线m上的正投影的长是()A5B4C3+4D4+49、为出行方便,近日来越来越多的长春市民使用起了共享单车,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节已知,ABE=70°,车轮半径为30 cm,当BC=60 cm时,小明体验后觉得骑着比较舒适,此时坐垫C离地面高度约为( )(结果精确到1cm,参考数据:sin70°0.94,cos70°0.34,tan70°1.41) A90cmB86cmC82cmD80cm10、如图,在中,点P为AC上一点,且,则的值为( )A3B2CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形ABCD中,点E是AD的中点,点O是AC的中点,AC与BE交于点F,AGBE,CHBE,垂足分别为G,H,连接OH,OG,CG下列结论:CHAGHG;AGHG;BHOG;AFOFOC213;5SAFGSGHC;OGACBHCD其中结论正确的序号是_2、如图,等腰直角三角形ABC,C=90°,AC=BC=4,M为AB的中点,PMQ=45°,PMQ的两边分别交BC于点P,交AC于点Q,若BP=3,则AQ=_3、如图,ABC中,BA=CB=AD,ACD30°,tanBAC,CD6+8,则线段BC长度为 _4、如图,沿AE折叠矩形纸片,使点D落在BC边的点F处已知,则的值为_5、在正方形ABCD中,AB2,点E是BC边的中点,连接DE,延长EC至点F,使得EFDE,过点F作FGDE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是_tanGFBMNNC;S四边形GBEM三、解答题(5小题,每小题10分,共计50分)1、求值:(结果保留根号)2、如图, 某种路灯灯柱 垂直于地面, 与灯杆 相连. 已知直线 与直线 的夹角是 . 在地面点 处测得点 的仰角是 , 点 仰角是 , 点 与点 之间的距离为 米 求:(1)点 到地面的距离;(2) 的长度(精确到 米)(参考数据: )3、计算:sin260°+|tan45°|2cos45°4、如图,在中,是边上的一个动点(不与点、重合),以点为顶点作,射线交于点,过点作交射线于,连接(1)求证:;(2)当时(如图2),求的长;(3)当时,直接写出的长5、如图,在中,(1)在线段上求作一点D,使得;(用尺规作图,不写作法,但应保留作图痕迹)(2)若,利用上述作图,求的值-参考答案-一、单选题1、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键2、B【分析】根据锐角三角函数求解即可【详解】解:在RtABC中,C90°,BC5,AC12,所以tanB,故选:B【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键3、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解4、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90°,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键5、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键6、C【分析】根据cos60°进行结合倒数回答即可【详解】解:由特殊角的三角函数值可知,cos60°,的倒数是,故:的倒数是2故选C【点睛】本题主要考查了特殊角的三角函数值和倒数,熟练掌握特殊角的三角函数值是解答此类问题的关键.7、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90°,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义8、C【分析】根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明ACDCBE,再根据相似三角形的性质可得CD的长,进而得出DE的长【详解】解:在RtABC中,ABC=30°,AB=10,AC=AB=5,BC=ABcos30°=10×,在RtCBE中,CE=,CAD+ACD=90°,BCE+ACD=90°,CAD=BCE,RtACDRtCBE,CD=,DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键9、B【分析】过点C作CNAB,交AB于M,交地面于N,构造直角三角形,利用三角函数,求出CM,再用CM减去MN即可【详解】解:过点C作CNAB,交AB于M,交地面于N由题意可知MN=30cm, 在RtBCM中,ABE=70°,sinABE=sin70°=0.94CM56cmCN=CM+MN=30+56=86(cm)故选:B【点睛】本题考查了解直角三角形的应用,构造直角三角形,将所给角放到直角三角形中,是解题的关键10、A【分析】过点P作PDAB交BC于点D,因为,且,则tanPBD=tan45°=1,得出PB=PD,再有,进而得出tanAPB的值【详解】解:如图,过点作交于点,,,且,PBD=45°,又,故选A【点睛】本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解二、填空题1、【分析】根据四边形ABCD为正方形性质,和点E是AD的中点得出AE=,根据三角函数定义得出tanABE=,得出BG=2AG,证明BAGCBH(AAS),得出AG=BH,BG=CH,可判断正确;根据BG=2AG,利用线段差得出HG=BG-AG=2AG-AG=AG,可判断正确;取CH中点J,连结OJ,先证AGOCJO(SAS),得出AOG=COJ,GO=JO,再证HGOHJO(SSS),得出HOG=HOJ,说明点G,O,J三点共线,得出GHJ为等腰直角三角形,利用勾股定理HG=可判断正确;四边形ABCD为正方形,可证AEFCBF,得出,求出,可判断正确;先证AGFCHF,得出GF=,求出SAFG,SGHC=,可判断不正确;利用sinDAC=sinOGH=,OGACBHCD,可判断正确【详解】解:四边形ABCD为正方形,AB=BC=AD,EAB=ABC=90°,点E是AD的中点,AE=tanABE=,BG=2AG,AGBE,CHBE,AGB=BHC=90°,ABG+BAG=90°,ABG+CBH=90°,BAG=CBH,在BAG和CBH中,BAGCBH(AAS),AG=BH,BG=CH,CHAGBG-BH=HG,故正确;BG=2AG,HG=BG-AG=2AG-AG=AG,故正确;取CH中点J,连结OJ,CJ=,AGBE,CHBE,AGCH,GAO=JCO,点O是AC的中点,AO=CO,在AGO和CJO中,AGOCJO(SAS),AOG=COJ,GO=JO,在HGO和HJO中,HGOHJO(SSS),HOG=HOJ,GOH+HOJ=AOG+FOH+HOJ=COJ+FOH+HOJ=AOC=180°,点G,O,J三点共线,HOG+HOJ=2HOG=180°,HOG=90°,GHJ=90°,HG=HJ,GHJ为等腰直角三角形,点O为JG中点,OH=OG=OJ,HG=,BH=HG=OG,故正确;四边形ABCD为正方形,ADBC,即AFBC,AEF=CBF,EAF=BCF,AEFCBF,OC-OF=, AFOFOC=213;故正确;AFG=CFH,AGF=CHF=90°,AGFCHF,,,GF+FH=GH,GF=SAFG,SGHC=SAFGSGHC,故不正确;AC为正方形对角线,DAC=45°,HOG=90°,OH=OG,OGH=45°,sinDAC=sinOGH=,OGACBHCD,故正确其中结论正确的序号是故答案为:【点睛】本题考查正方形性质,锐角三角函数值,三角形全等判定与性质,三点共线,等腰直角三角形判定与性质,勾股定理,三角形相似判定与性质,三角形面积,本题难度大,涉及知识多,图形复杂,掌握多方面知识是解题关键2、【分析】连接CM,过点P作于点F,过点M作于点D,由勾股定理得,根据三线合一得,解直角三角形即可求解【详解】如图,连接CM,过点P作于点F,过点M作于点D,在中,M为AB的中点,在中,在中,在中, ,在中,在中,故答案为:【点睛】本题考查了勾股定理,等腰三角形的性质以及解直角三角形,添加辅助线构造直角三角形是解题的关键3、【分析】作AFDC于点F,作BEAC于点E,首先根据tanBAC表示出,然后根据等腰三角形的性质和30°角直角三角形的性质表示出AC和AF的长度,然后根据勾股定理表示出FC和FD的长度,最后根据CD的长度列方程求解即可【详解】如图所示,作AFDC与点F,作BEAC与点E,tanBAC,BEAC设,BEACAFDC,ACD30°在中,在中,解得:,故答案为:10【点睛】此题考查了勾股定理,解直角三角形,等腰三角形的性质,30°角直角三角形的性质,解题的关键是根据题意正确作出辅助线,以及熟练掌握以上知识点和性质定理4、【分析】根据折叠的性质和锐角三角函数的概念来解答即可【详解】解:根据题意可得:在中,有,则在中, ,故故答案是:【点睛】本题考查了翻折变换,矩形的性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键5、【分析】证明,由可得;结合,证明;证明,得;求出和的面积,进而由它们的差可得【详解】解:,故正确,由可得:,故正确,故不正确,故正确,故答案是:【点睛】本题考查了正方形性质,全等三角形判定和性质,相似三角形判定和性质等知识,解题的关键是层层递进,下一问要有意识应用前面解析三、解答题1、【分析】利用,代入,利用二次根式的计算法则计算即可【详解】解:,【点睛】本题考查了特殊值的三角函数值,和二次根式的混合运算,熟记特殊值的三角函数值和二次根式的运算法则是解题关键2、(1)2.8米;(2)AB的长度为0.6米【分析】(1)过点A作交于点F,则,在中,用三角函数即可得;(2)过点A作交于点H,根据,证明四边形AFCH是矩形,则,设BC=x,则米,根据三角形内角和定理得,即,根据三角函数得DF=2.1米,米,在中,根据三角函数得,则,即可得,则,根据三角函数即可得米【详解】解:(1)过点A作交于点F,则,在中,(米),即点A到地面的距离为2.8米;(2)过点A作交于点H,在四边形AFCH中,四边形AFCH是矩形,设BC=x,则米,(米),(米),米,在中,(米),(米)【点睛】本题考查了三角函数,矩形的判定与性质,解题的关键是掌握并灵活运用这些知识点3、【分析】先运用特殊角的三角函数值和绝对值的知识进行计算,然后再合并即可解答【详解】解:原式()2+|1|2×+1【点睛】本题主要考查了特殊角的三角函数值的混合运算、绝对值等知识点,牢记特殊角的三角函数值成为解答本题的关键4、(1)见解析;(2)【分析】(1)先由,得到, 再由三角形外角的性质可得,由此即可证明;(2)先解直角三角形ABM得到,再由三线合一定理得到,然后证明,得到,求得,再由平行线分线段成比例得到 ,即可求解;(3)过点F作FHBC于点H,过点A作AMBC于点M,ANFH于点N,则NHAAMHANH90°,则四边形AMHN为矩形,得到MAN90°,MHAN,然后证明AFNADM,得到,由,可求出ANAM,即可得到CHCMMHCMAN由此求解即可【详解】(1)证明:, , , ; (2)如图中,过点A作于,在中,AB=AC,AMBC, , , 即, , ,;(3)过点F作FHBC于点H,过点A作AMBC于点M,ANFH于点N,则NHAAMHANH90°,四边形AMHN为矩形MAN90°,MHAN,由(2)得BMCMBC8,ANFH,AMBC,ANF90°AMDDAF90°MAN,MAD+NAD=NAF+NAD,即NAFMAD,AFNADM,ANAM,CHCMMHCMAN又FHDC,FD=FC,CD2CH7,BDBCCD1679【点睛】本题主要考查了相似三角形的判定与性质,解直角三角形,等腰三角形的性质,平行线分线段成比例,勾股定理,矩形的性质与判定等等,解题的关键是正确寻找相似三角形解决问题5、(1)见解析;(2)【分析】(1)作的垂直平分线,交于点,则点即为所求;(2)根据(1)的结论可得,设,则,进而根据正切的定义即可求得答案【详解】解:(1)如图,作的垂直平分线,交于点,则点即为所求,连接 (2)设,则【点睛】本题考查了等腰三角形的性质,三角形的外角性质,垂直平分线的性质,正切的定义,勾股定理,掌握以上知识是解题的关键