知识点详解人教版八年级数学下册第十八章-平行四边形专题测评练习题(无超纲).docx
-
资源ID:30769646
资源大小:513.40KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
知识点详解人教版八年级数学下册第十八章-平行四边形专题测评练习题(无超纲).docx
人教版八年级数学下册第十八章-平行四边形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD2、如图,在ABC中,ABC90°,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D403、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D84、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD5、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD26、在锐角ABC中,BAC60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60°时,MNBC,一定正确的有( )ABCD7、在中,AC与BD相交于点O,要使四边形ABCD是菱形,还需添加一个条件,这个条件可以是( )AAO=COBAO=BOCAOBODABBC8、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形9、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D210、下列条件中,能判定四边形是正方形的是( )A对角线相等的平行四边形B对角线互相平分且垂直的四边形C对角线互相垂直且相等的四边形D对角线相等且互相垂直的平行四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM1.5,ON1,则平行四边形ABCD的周长是_2、如图,正方形的边长为4,它的两条对角线交于点,过点作边的垂线,垂足为,的面积为,过点作的垂线,垂足为,的面积为,过点作的垂线,垂足为,的面积为,的面积为,那么_,则_3、点D、E、F分别是ABC三边的中点,ABC的周长为24,则DEF的周长为_4、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _5、如图所示,正方形ABCD的面积为6,CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图所示,在ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,AB=2CD,求证:DGCE 2、如图,ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF(1)求证:BDF30°(2)若EFD45°,AC+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角DMN,其中DNMN,连接FM,点O为FM的中点,当DMN绕点D旋转时,求证:EO的最大值等于BC3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形(1)如图,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD 正四边形;(填“是”或“不是”)(2)如图,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由4、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,D,M关于直线AF对称连结DM并延长交AE的延长线于N,求证:5、如图,在ABCD中,对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O求证:四边形AECF是菱形(小海的证明过程)证明:EF是AC的垂直平分线,OAOC,OEOF,EFAC,四边形AECF是平行四边形又EFAC,四边形AECF是菱形(老师评析)小海利用对角线互相平分证明了四边形AECF是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了(挑错改错)(1)请你帮小海找出错误的原因;(2)请你根据小海的思路写出此题正确的证明过程-参考答案-一、单选题1、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键2、C【解析】【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90°,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90°,ADE=ABC=90°,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键3、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90°,根据勾股定理计算,得到答案【详解】解:C=90°,CAB+CBA=90°,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90°,即PDQ=90°,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键4、C【解析】【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出5、B【解析】【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90°,1=2,DFG=90°,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90°,1+2+3+4=90°,22+23=90°,2+3=45°,即EDG=45°,EHDE,DEH=90°,DEH是等腰直角三角形,AED+BEH=AED+1=90°,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90°,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等6、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键7、C【解析】【分析】根据菱形的判定分析即可;【详解】四边形ABCD时平行四边形,AOBO,是菱形;故选C【点睛】本题主要考查了菱形的判定,准确分析判断是解题的关键8、D【解析】【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键9、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半10、D【解析】【分析】根据正方形的判定定理进行判断即可【详解】解:A、对角线相等的平行四边形是矩形,不符合题意;B、对角线互相平分且垂直的四边形是菱形,不符合题意;对角线相等且互相垂直的平行四边形是正方形,故C选项不符合题意;D选项符合题意;故选:D【点睛】本题考查了正方形的判定,熟知正方形的判定定理是解本题的关键二、填空题1、10【解析】【分析】根据平行四边形的性质可得BODO,ADBC,ABCD,再由条件M、N分别为AB、BC的中点可得MO是ABD的中位线,NO是BCD的中位线,再根据三角形中位线定理可得AD、DC的长【详解】解:四边形ABCD是平行四边形,BODO,ADBC,ABCD,M、N分别为AB、BC的中点,MOAD,NOCD,OM1.5,ON1,AD3,CD2,平行四边形ABCD的周长是:332210,故答案为:10【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分2、 【解析】【分析】由正方形的性质得出、,得出规律,再求出它们的和即可【详解】解:四边形是正方形,;故答案为:;【点睛】本题是图形的变化题,考查了正方形的性质、三角形面积的计算,解题的关键是通过计算三角形的面积得出规律3、12【解析】【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答【详解】解:如图所示,D、E、F分别是AB、BC、AC的中点,ED、FE、DF为ABC中位线,DFBC,FEAB,DEAC,DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)2412故答案为:12【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路4、10【解析】【分析】根据正方形的性质,结合题意易求证,即可利用“ASA”证明,得出最后根据勾股定理可求出,即正方形的面积为10【详解】四边形ABCD是正方形,根据题意可知:,在和中,在中,正方形ABCD的面积是10故答案为:10【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键5、【解析】【分析】根据正方形的性质可知C、A关于BD对称,推出CKAK,推出EK+AKCE,根据等边三角形性质推出CECD,根据正方形面积公式求出CD即可【详解】解:四边形ABCD是正方形,C、A关于BD对称,即C关于BD的对称点是A,如图,连接CK,则CKAK,EK+CKCE,CDE是等边三角形,CECD,正方形ABCD的面积为6,CD,KA+KE的最小值为,故答案为:【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE三、解答题1、见解析【分析】连接DE,根据直角三角形的性质得到DE=AB,再根据AB=2CD,得到CD=AB,从而可得CD=DE,根据等腰三角形的三线合一证明即可【详解】证明:连接DE,如图:AD是边BC上的高,CE是边AB上的中线,ADBD,E是AB的中点,DE=AB,AB=2CD,CD=AB,CD=DE,G是CE的中点,DGCE【点睛】本题考查了直角三角形的性质、等腰三角形的判定和性质解题的关键是掌握直角三角形的性质、等腰三角形的判定和性质,明确在直角三角形中,斜边上的中线等于斜边的一半2、(1)见解析;(2)2;(3)见解析【分析】(1)由ABC是等边三角形,可得ABC=60°,由D、F关于直线BE对称,得到BF=BD,则BFD=BDF,由三角形外角的性质得到BFD+BDF=ABD,则BDF=BFD=30°;(2)设,由D、F关于直线BE对称,得到BGD=BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性质和勾股定理得,证明EABDAC得到,再由,得到,由此求解即可;(3)连接OG,先求出,证明OG是三角形DMF的中位线,得到,再根据两点之间线段最短可知,则OE的最大值等于BC【详解】解:(1)ABC是等边三角形,ABC=60°,D、F关于直线BE对称,BF=BD,BFD=BDF,BFD+BDF=ABD,BDF=BFD=30°;(2)设,D、F关于直线BE对称,BGD=BGF=90°,EF=ED,EDG=EFG=45°,EG=DG,BDG=30°,由旋转的性质可得AE=AD,EAD=BAC=60°,EAB+BAD=CAD+BAD,即EAB=DAC,又AB=AC,EABDAC(SAS),;(3)如图所示,连接OG,在等腰直角三角形DMN中,D、F关于直线BE对称,G为DF的中点,又O为FM的中点,OG是三角形DMF的中位线,由(2)可得,根据两点之间线段最短可知,OE的最大值等于BC【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明ABCBCDCDEDEAEAB得出ABC=BCD=CDE=DEA=EAB,即可得出结论;(3)由SSS证明ABEBCADEC得出BAE=CBA=EDC,AEB=ABE=BAC=BCA=DCE=DEC,由SSS证明ACEBEC得出ACE=CEB,CEA=CAE=EBC=ECB,由四边形ABCE内角和为360°得出ABC+ECB=180°,证出ABCE,由平行线的性质得出ABE=BEC,BAC=ACE,证出BAE=3ABE,同理:CBA=D=AED=BCD=3ABE=BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形理由:ABBCCDDA,四边形ABCD是菱形,ACBD,四边形ABCD是正方形四边形ABCD是正四边形故答案为:是(2)证明:凸五边形ABCDE的各条边都相等,ABBCCDDEEA,在ABC、BCD、CDE、DEA、EAB中,ABCBCDCDEDEAEAB(SSS),ABCBCDCDEDEAEAB,五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形若ACBECE,五边形ABCDE是正五边形,理由如下:在ABE、BCA和DEC中,ABEBCADEC(SSS),BAECBAEDC,AEBABEBACBCADCEDEC,在ACE和BEC中,ACEBEC(SSS),ACECEB,CEACAEEBCECB,四边形ABCE内角和为360°,ABC+ECB180°,ABCE,ABEBEC,BACACE,CAECEA2ABE,BAE3ABE,同理:CBADAEDBCD3ABEBAE,五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键4、见解析【分析】连结,由对称的性质可知,进而可证,即可得,由AON=90°,可得【详解】证明:连结,、关于对称,垂直平分,在Rt和Rt中 ,又,【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,全等三角形的判定与性质,综合性较强,有一定难度准确作出辅助线是解题的关键有关45°角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解5、(1)见解析;(2)见解析【分析】(1)由垂直平分线的性质可求解;(2)由“”可证,可得,且,由菱形的判定可证四边形是菱形【详解】解:(1)是的垂直平分线,不能得出;(2)四边形是平行四边形,是的垂直平分线,且,且四边形是平行四边形四边形是菱形【点睛】本题考查了菱形的判定,全等三角形的判定和性质,线段垂直平分线的性质,平行四边形的性质,解题的关键是熟练运用线段垂直平分线的性质