欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    难点解析沪科版九年级数学下册第24章圆章节训练试卷(含答案详解).docx

    • 资源ID:30770055       资源大小:1.24MB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    难点解析沪科版九年级数学下册第24章圆章节训练试卷(含答案详解).docx

    沪科版九年级数学下册第24章圆章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD2、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm3、如图,在ABC中,CAB=64°,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( )A64°B52°C42°D36°4、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个5、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D6、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD7、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD8、如图,在RtABC中,ACB90°,A30°,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD9、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm10、下列图形中,可以看作是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与ADE相等的角是 _ 2、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)3、在平面直角坐标系中,已知点与点关于原点对称,则_,_4、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_5、如图,PA是O的切线,A是切点若APO=25°,则AOP=_°三、解答题(5小题,每小题10分,共计50分)1、如图,内接于,BC是的直径,D是AC延长线上一点(1)请用尺规完成基本作图:作出的角平分线交于点P(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E则PE与有怎样的位置关系?请说明理由2、在平面直角坐标系xOy中,O的半径为1对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围3、如图,已知等边内接于O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E(1)求证:CE是O的切线;(2)若AB的长为6,求CE的长4、如图,在ABC是O的内接三角形,B45°,连接OC,过点A作ADOC,交BC的延长线于D(1)求证:AD是O的切线;(2)若O的半径为2,OCB75°,求ABC边AB的长5、如图1,在中,点,分别在边,上,连接,点在线段上,连接交于点(1)比较与的大小,并证明;若,求证:;(2)将图1中的绕点逆时针旋转,如图2若是的中点,判断是否仍然成立如果成立,请证明;如果不成立,请说明理由.-参考答案-一、单选题1、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键2、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键3、B【分析】先根据平行线的性质得ACC=CAB=64°,再根据旋转的性质得CAC等于旋转角,AC=AC,则利用等腰三角形的性质得ACC=ACC=64°,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64°ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64°,CAC=180°-ACC-ACC=180°-2×64°=52°,旋转角为52°故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等4、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键5、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知OCA=OBA=90°,OC=OB,即可证明RtOCARtOBA得到OAC=OAB,则,AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为【详解】解:如图所示,设圆的圆心为O,连接OC,OB,AC,AB都是圆O的切线,OCA=OBA=90°,OC=OB,又OA=OA,RtOCARtOBA(HL),OAC=OAB,DAC=60°,AOB=30°,OA=2AB=6,圆O的直径为,故选D【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键6、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键7、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.8、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键9、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键10、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果【详解】解:四边形ABCD内接于圆,E为CD延长线上一点,故答案为:【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键2、【分析】先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可【详解】过C作CDOA于D一次函数的图象与x轴交于点A,与y轴交于点B,当时,B点坐标为(0,1)当时,A点坐标为作的外接圆,线段AB中点C的坐标为,三角形BOC是等边三角形C的坐标为故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积用已知点的坐标表示相应的线段是解题的关键3、2 2 【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案【详解】解:点和点关于原点对称,故答案为:2;2【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键4、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹5、65【分析】根据切线的性质得到OAAP,根据直角三角形的两锐角互余计算,得到答案【详解】解:PA是O的切线,OAAP,APO=25°,故答案为:65【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键三、解答题1、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点(2)如图2所示,连接,由题意可知,;在四边形中,求出,得出,由于是半径,故有是的切线(1)解:如图1所示(2)解:是的切线如图2所示,连接由题意可知,在四边形中又是半径是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点解题的关键在于将知识综合灵活运用2、(1)EF、CD;(2);(3);(4)或【分析】(1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;(2)根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;由可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;(3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;(4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围【详解】(1)的半径为1,则的最长的弦长为2根据两点的距离可得故符合题意的“反射线段”有EF、CD;故答案为:EF、CD(2)如图,过点作轴于点,连接 A点坐标为(0,2),B点坐标为(1,1),且,的半径为1,且线段AB是O的以直线l为对称轴的“反射线段”,由可得当时,yM如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则, 过中点,作直线交轴于点,则即为反射轴yM,即即解得(舍)(3)的半径为1,则是等边三角形,根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴, 反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线当M点在圆上运动一周时,求反射轴l未经过的区域的面积为(4)如图,根据(2)的方法找到所在的圆心,设则,是等腰直角三角形,当M点在圆上运动一周时,如图,取的中点,的中点,是的中位线,即的中点在以为圆心,半径为的圆上运动若MN是O的以直线l为对称轴的“反射线段”,则为的切线设与轴交于点,同理可得反射轴l与y轴交点的纵坐标的取值范围为或【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键3、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60°,求出OCB=30°,则OCE=90°,结论得证;(2)根据题意由条件可得DBC=30°,BEC=90°,进而即可求出CE=BC3【详解】解:(1)证明:如图连接OC、OB是等边三角形 又 与O相切; (2)四边形ABCD是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解4、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得COA=90°,再由平行线的性质得到OAD+COA=180°,则OAD=90°,由此即可证明;(2)连接OB,过点O作OEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出COB =30°,则AOB=120°,可以得到OAB=OBA=30°,由勾股定理可得,求出,则AB=【详解】解:(1)如图所示,连接OA,CBA=45°,COA=90°, ADOC,OAD+COA=180°,OAD=90°,又点A在圆O上, AD是O的切线; (2)连接OB,过点O作OEAB,垂足为E,OCB=75°,OB=OC,OCB=OBC=75°,COB=180°-OCB-OBC=30°, 由(1)证可得AOC=90°,AOB=120°, OA=OB,OAB=OBA=30°,又OEAB,AE=BE, 在RtAOE中,AO=2,OAE=30°,OE=AO=1, 由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键5、(1)CAE=CBD,理由见解析;证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)只需要证明CAECBD即可得到CAE=CBD;先证明CAH=BCF,然后推出BDC=FCD,CAE=CBD=BCF,得到CF=DF,CF=BF,则BD=2CF,再由CAECBD,即可得到AE=2BD=2CF;(2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明ACEBCG得到AE=BG,再由CF是BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)CAE=CBD,理由如下:在CAE和 CBD中,CAECBD(SAS),CAE=CBD;CFAE,AHC=ACB=90°,CAH+ACH=ACH+BCF=90°,CAH=BCF,DCF+BCF=90°,CDB+CBD=90°,CAE=CBD,BDC=FCD,CAE=CBD=BCF,CF=DF,CF=BF,BD=2CF,又CAECBD,AE=2BD=2CF;(2)AE=2CF仍然成立,理由如下:如图所示延长DC到G使得,DC=CG,连接BG,由旋转的性质可得,DCE=ACB=90°,ACD+BCD=BCE+BCD,ECG=90°,ACD=BCE,ACD+DCE=BCE+ECG,即ACE=BCG,又CE=CD=CG,AC=BC,ACEBCG(SAS),AE=BG,F是BD的中点,CD=CG,CF是BDG的中位线,BG=2CF,AE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键

    注意事项

    本文(难点解析沪科版九年级数学下册第24章圆章节训练试卷(含答案详解).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开