精品试卷沪科版九年级数学下册第24章圆综合测试试题(无超纲).docx
-
资源ID:30770454
资源大小:881.12KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷沪科版九年级数学下册第24章圆综合测试试题(无超纲).docx
沪科版九年级数学下册第24章圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19°B38°C52°D76°2、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个3、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm4、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦5、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )ABCD6、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m7、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20°B25°C30°D40°8、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D189、如图,都是上的点,垂足为,若,则的度数为( )ABCD10、如图,是的直径,弦,垂足为,若,则( )A5B8C9D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(huán)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_3、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于_4、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与ADE相等的角是 _ 5、如图,AB为O的弦,AOB=90°,AB=a,则OA=_,O点到AB的距离=_三、解答题(5小题,每小题10分,共计50分)1、如图,是的两条切线,切点分别为,连接并延长交于点,过点作的切线交的延长线于点,于点(1)求证:四边形是矩形;(2)若,求的长.2、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为_度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部试探究与之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值3、如图,已知线段,点A在线段上,且,点B为线段上的一个动点以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和若旋转后M、N两点重合成一点C(即构成),设(1)的周长为_;(2)若,求x的值4、如图,已知AB是O的直径,连接OC,弦,直线CD交BA的延长线于点(1)求证:直线CD是O的切线;(2)若,求OC的长5、如图,在ABC是O的内接三角形,B45°,连接OC,过点A作ADOC,交BC的延长线于D(1)求证:AD是O的切线;(2)若O的半径为2,OCB75°,求ABC边AB的长-参考答案-一、单选题1、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.2、B【分析】根据所学知识对五个命题进行判断即可【详解】1、=12-4×1=-3<0,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键3、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键4、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.5、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键7、B【分析】连接OA,如图,根据切线的性质得PAO=90°,再利用互余计算出AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90°,P=40°,AOP=50°,OA=OB,B=OAB,AOP=B+OAB,B=AOP=×50°=25°故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系8、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积×2×2×36(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长9、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键10、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得D=90°,CD=DE,从而得到CE是直径,ECD=45°,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90°,CD=DE,CE是直径,ECD=45°,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键2、90°【分析】先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论【详解】解:是的内接正六边形一边 故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键3、4【分析】在正方形ABCD中,BEDE2,所以在直角三角形ECE中,EC8,CE4,利用勾股定理求得EE的长即可【详解】解:在正方形ABCD中,C90°,由旋转得,BEDE2,EC8,CE4,在直角三角形ECE中,EE4故答案为4【点睛】本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键4、ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果【详解】解:四边形ABCD内接于圆,E为CD延长线上一点,故答案为:【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键5、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90°,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题三、解答题1、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解【详解】(1)证明:,DE是的两条切线,于点EFC=EDC=FCD=90°,四边形是矩形;(2)四边形是矩形,EF=,CF=,DE是的两条切线,AB=AC,BE=DE,设AB=AC=x,则AE=x+2,AF=x-2,在中,解得:x=5,AC=5+2=7【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键2、(1)135°(2)MOP-NOQ=30°,理由见解析(3)s或s【分析】(1)先根据OP平分得到PON,然后求出BOP即可;(2)先根据题意可得MOP=90°-POQ, NOQ=60°-POQ,然后作差即可;(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可(1)解:OP平分MONPON=MON=45°三角板OPQ旋转的角:BOP=PON+NOB=135°故答案是135°(2)解:MOP-NOQ=30°,理由如下:MON=90°,POQ=60°MOP=90°-POQ, NOQ=60°-POQ,MOP-NOQ=90°-POQ -(60°-POQ)=30°(3)解:射线OC平分,射线OD平分NOC=45°,POD=30°选择前OC与OD的夹角为COD=NOC+NOP+POD=165°OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°此时OC与OE的夹角165-(180-45-2×33)=96°OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒设在OC与OD第二次相遇前,当时,需要旋转时间为t当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s然后,都是每隔360÷(5°-2°)=120秒,出现一次这种现象C、D第二次相遇需要时间72秒在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s【点睛】本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键3、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将ABC的周长转化为MN;(2)由+=270°,得ACB=90°,利用勾股定理列方程即可(1)解:由旋转知:AM=AC=1,BN=BC=3-x,ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:+=270°,CAB+CBA=360°-270°=90°,ACB=180°-(CAB+CBA)=180°-90°=90°,AC2+BC2=AB2,即12+(3-x)2=x2,解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明ACB=90°是解题的关键4、(1)见解析;(2)【分析】(1)连接OD,由ADOC及OD=OA,即可得到COB=DOC,从而可证得OBCODC,即可证得CD是O的切线;(2)由ADOC可得EADEOC,可得,再由OBCODC得BC=CD,从而可得,则可求得OC的长【详解】(1)连接OD,又,在与中,又,是的切线(2),又,OC=15【点睛】本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径5、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得COA=90°,再由平行线的性质得到OAD+COA=180°,则OAD=90°,由此即可证明;(2)连接OB,过点O作OEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出COB =30°,则AOB=120°,可以得到OAB=OBA=30°,由勾股定理可得,求出,则AB=【详解】解:(1)如图所示,连接OA,CBA=45°,COA=90°, ADOC,OAD+COA=180°,OAD=90°,又点A在圆O上, AD是O的切线; (2)连接OB,过点O作OEAB,垂足为E,OCB=75°,OB=OC,OCB=OBC=75°,COB=180°-OCB-OBC=30°, 由(1)证可得AOC=90°,AOB=120°, OA=OB,OAB=OBA=30°,又OEAB,AE=BE, 在RtAOE中,AO=2,OAE=30°,OE=AO=1, 由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键