考点解析:北师大版七年级数学下册第四章三角形难点解析试卷(含答案详解).docx
-
资源ID:30770512
资源大小:565.66KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
考点解析:北师大版七年级数学下册第四章三角形难点解析试卷(含答案详解).docx
北师大版七年级数学下册第四章三角形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列三角形与下图全等的三角形是( )ABCD2、如图,垂足分别为、,且,则的长是( )A2B3C5D73、以下列各组长度的线段为边,能构成三角形的是()A1cm,1cm,8cmB3cm,3cm,6cmC3cm,4cm,5cmD3cm,2cm,1cm4、有两根长度分别为7cm,11cm的木棒,下面为第三根的长度,则可围成一个三角形框架的是()A3cmB4cmC9cmD19cm5、如图是5×5的正方形网格中,以D,E为顶点作位置不同的格点的三角形与ABC全等,这样格点三角形最多可以画出()A2个B3个C4个D5个6、已知:如图,D、E分别在AB、AC上,若ABAC,ADAE,A60°,B25°,则BDC的度数是()A95°B90°C85°D80°7、如果一个三角形的两边长分别为5cm和8cm,则第三边长可能是( )A2cmB3cmC12cmD13cm8、如图,和全等,且,对应若,则的长为( )A4B5C6D无法确定9、已知线段AB9cm,AC5cm,下面有四个说法:线段BC长可能为4cm;线段BC长可能为14cm;线段BC长不可能为3cm;线段BC长可能为9cm所有正确说法的序号是( )ABCD10、如图,在ABC和DEF中,AD,AFDC,添加下列条件中的一个仍无法证明ABCDEF的是()ABCEFBABDECBEDACBDFE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,CD90°,ACAD,请写出一个正确的结论_2、图是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图中的变动情况,说一说,其中所蕴含的数学原理是_3、如图,在ABC中,点D,E,F分别为BC,AD,CE的中点,且SBEF=2cm2,则SABC=_4、如图,点C是线段AB的中点,请你只添加一个条件,使得(1)你添加的条件是_;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是_5、如图,点E,F分别为线段BC,DB上的动点,BEDF要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _三、解答题(5小题,每小题10分,共计50分)1、如图,点E、A、C在同一直线上,ABCD,BE,ACCD求证:BCED2、已知锐角,于,于F,交于E 求证:BDE 若BD=8,DC=6,求线段BE的长度 3、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由4、如图,已知点E、C在线段BF上,求证:ABCDEF5、如图,在ABC中,D是边AB上一点,E是边AC的中点,过点C作交DE的延长线于点F(1)求证:ADECFE;(2)若ABAC,CE5,CF7,求DB的长-参考答案-一、单选题1、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案【详解】由题可知,第三个内角的度数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误故选:C【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键2、B【分析】根据,可得AEC=BDC=90°,CAE+ACE=90°,再由BCD=CAE,从而证得ACECBD,进而得到CE=BD,AE=CD,即可求解【详解】解:,AEC=BDC=90°,CAE+ACE=90°,BCD+ACE=90°,BCD=CAE,ACECBD,CE=BD,AE=CD,DE=CD-CE=AE-BD=5-2=3故选:B【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键3、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、1+128,不能组成三角形,故此选项不合题意;B、3+36,不能组成三角形,故此选项不符合题意;C、3+475,能组成三角形,故此选项符合题意;D、1+23,不能组成三角形,故此选项不合题意;故选:C【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键4、C【分析】已知两边,则第三边的长度应是大于两边的差且小于两边的和,这样就可求出第三边长的范围【详解】解:依题意得:117x7+11,即4x18,9cm适合故选:C【点睛】本题考查三角形三边关系,是重要考点,掌握相关知识是解题关键5、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形【详解】根据题意,运用“SSS”可得与ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图故选C【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做到不重不漏6、C【分析】根据SAS证ABEACD,推出CB,求出C的度数,根据三角形的外角性质得出BDCA+C,代入求出即可【详解】解:在ABE和ACD中,ABEACD(SAS),CB,B25°,C25°,A60°,BDCA+C85°,故选C【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件7、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c,由题可知 ,即,所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点8、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可【详解】和全等,对应AB=DF=4故选:A【点睛】本题考查了全等三角形的概念及性质,应注意对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等全等三角形有传递性9、D【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可【详解】解:线段AB9cm,AC5cm,如图1,A,B,C在一条直线上,BCABAC954(cm),故正确;如图2,当A,B,C在一条直线上,BCABAC9514(cm),故正确;如图3,当A,B,C不在一条直线上,95=4cmBC95=14cm,故线段BC可能为9cm,不可能为3cm,故,正确故选D【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键10、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可【详解】解:AF=DC,AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,A=D,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;B、AB=DE,A=D,AC=DF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CB=E,A=D,AC=DF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;DACB=DFE,AC=DF,A=D,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL二、填空题1、BCBD【分析】根据HL证明ACB和ADB全等解答即可【详解】解:在RtACB和RtADB中, ,ACBADB(HL),BCBD,故答案为:BCBD(答案不唯一)【点睛】此题考查全等三角形的判定和性质,关键是根据HL证明ACB和ADB全等解答2、三角形具有稳定性,四边形具有不稳定性【分析】根据三角形的稳定性和四边形的不稳定性解答【详解】由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性故答案是:三角形具有稳定性,四边形具有不稳定性【点睛】本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性3、8cm2【分析】由于三角形的中线将三角形分成面积相等的两部分,则SCFBSEFB2cm2,于是得到SCEB4cm2,再求出SBDE2cm2,利用E点为AD的中点得到SABD2SBDE4cm2,然后利用SABC2SABD求解【详解】解:F点为CE的中点,SCFBSEFB2cm2,SCEB4cm2,D点为BC的中点,SBDESBCE2cm2,E点为AD的中点,SABD2SBDE4cm2,SABC2SABD8cm2故答案为:8cm2【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键4、AD=CE(或D=E或ACD=B)(答案不唯一) SAS 【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可【详解】解:(1)添加的条件是:AD=CE(或D=E或ACD=B)故答案为:AD=CE(或D=E或ACD=B)(2)若添加:AD=CE点C是线段AB的中点,AC=BC (SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键5、连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点【分析】按照连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点的步骤作图即可得【详解】解:步骤是连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点;如图,点即为所求故答案为:连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点【点睛】本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键三、解答题1、见解析【分析】利用AAS定理证明ACBCED,根据全等三角形的对应边相等证明即可【详解】证明:ABCD,BACECD,在ABC和CED中, ACBCED(AAS),BCED【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、角角边、边边边是解题的关键2、(1)见解析;(2)10【分析】(1)由题意可得AD=BD,由余角的性质可得CBE=DAC,根据“ASA”可证BDEADC;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面积公式可求BE的长度【详解】(1)证明:,ABC=45°ABC=BAD=45°,AD=BD,DABC,BEACACD+DAC=90°,ACD+CBE=90°CBE=DAC,AD=BD,ADC=ADB=90°BDEADCASA);(2)BDEADCAD=BD=8,CD=DE=6,BE=AC【点睛】本题主要考查了全等三角形的判定与性质、勾股定理等知识点,灵活应用全等三角形的判定与性质成为解答本题的关键3、不合格,理由见解析【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115°,这个零件不合格【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键4、见解析【分析】由平行线的性质可证明再由,可推出最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键5、(1)见解析;(2)DB=3【分析】(1)先证明 再证明从而可得结论;(2)利用全等三角形的性质证明再求解 从而可得答案.【详解】证明:(1) E是边AC的中点, ADECFE;(2) ADECFE,CE5,CF7, ABAC, 【点睛】本题考查的是全等三角形的判定与性质,掌握“利用证明三角形全等及利用全等三角形的性质求解线段的长度”是解本题的关键.