难点详解沪科版九年级数学下册第25章投影与视图综合练习试题(含详解).docx
-
资源ID:30770887
资源大小:357.90KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解沪科版九年级数学下册第25章投影与视图综合练习试题(含详解).docx
沪科版九年级数学下册第25章投影与视图综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为()mA2B4C6D82、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )ABCD3、水平放置的下列几何体,主视图不是矩形的是( )ABCD4、如图所示的几何体的左视图为()ABCD5、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为()ABCD6、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )ABCD7、如图所示的几何体左视图是( )ABCD8、如图,由5个完全一样的小正方体组成的几何体的左视图是( )ABCD9、下面四个立体图形中,从正面看是三角形的是()ABCD10、如图是下列哪个立体图形的主视图()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示至少再加_个小正方体,该几何体可成为一个正方体2、一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用 _个小立方块搭成的3、圆锥的母线长为5,侧面展开图的面积为20,则圆锥主视图的面积为_4、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由_个小正方体组成5、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是_三、解答题(5小题,每小题10分,共计50分)1、一个几何体由大小相同的小立方块搭成,箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图2、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图3、如图,是由若干个完全相同的小正方体组成的一个几何体从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形4、请从正面、左面、上面观察, 画出该几何体的三视图5、如图是由六个棱长为1 cm的小正方体组成的几何体(1)该几何体的表面积是(含下底面) cm2;(2)分别画出该立体图形的三视图-参考答案-一、单选题1、B【分析】根据题意,画出示意图,易得:EDCFDC,进而可得,即DC2EDFD,代入数据可得答案【详解】解:根据题意,作EFC,树高为CD,且ECF90°,ED2m,FD8m;E+F90°,E+ECD90°,ECDF,EDCFDC,即DC2EDFD2×816,解得CD4m故选:B【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键2、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键3、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键4、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键5、C【分析】先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得【详解】解:由题意得:观察这个立体图形的正面如下:则它的俯视图为故选:C【点睛】本题考查了三视图,掌握理解俯视图的定义是解题关键6、A【分析】根据几何体的三视图解答即可【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图7、C【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【详解】解:从几何体的左面看,是一列两个矩形,矩形的中间用虚线隔开故选C【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置8、B【分析】根据从左边看得到的图形是左视图,可得答案【详解】解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图9、C【分析】找到从正面看所得到的图形为三角形即可【详解】解:A、主视图为正方形,不符合题意;B、主视图为圆,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图10、B【分析】根据主视图即从物体正面观察所得的视图求解即可【详解】解:的主视图为,故选:B【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状二、填空题1、4【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解【详解】解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,844(个)故至少再加4个小正方体,该几何体可成为一个正方体故答案为:4【点睛】本题主要考查三视图,能够根据三视图想象出立体图是解题的关键2、6【分析】根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题【详解】解:从正面看至少有三个小立方体且有两层;从上面看至少有五个小立方体,且有两列;只需要保证从正面看的上面一层有一个,从上面看有五个小立方体即可满足题意,最少是用6个小立方块搭成的,故答案为:6【点睛】此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案3、12【分析】圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=rl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可【详解】解:根据圆锥侧面积公式:S=rl,圆锥的母线长为5,侧面展开图的面积为20,故20=×5×r,解得:r=4由勾股定理可得圆锥的高圆锥的主视图是一个底边为8,高为3的等腰三角形,它的面积=,故答案为:12【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键4、11【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数【详解】解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:那么共最多由个小立方块故答案为:11【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案5、【分析】根据三视图画出图形,并且得出每列和每行的个数,然后相加即可得出答案【详解】解:根据三视图可画图如下:则组成这个几何体的小正方体的个数是:1+3+1+1+1+29;故答案为:9【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键三、解答题1、见解析【分析】从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形据此可画出图形【详解】解:如图所示:【点睛】本题考查的是画简单组合体的三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形,理解三视图的含义是作图的关键.2、见解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形3、见解析【分析】根据几何体的三视图画法作图【详解】解:如图,【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键4、见解析【分析】根据主视图的定义画出从前面先后看得到的图形,根据左视图的定义画出从左向右看得到的图形,根据俯视图的定义画出从上向下看得到的图形即可【详解】解:主视图是从前面先后看得到的图形,图形分三列,左边列有三层3个小正方形,中间列一层1个小正方形,右边列有两层2个小正方形,根据看到的图形可画出主视图,左视图是从左向右看得到的图形,图形分三列,左边列左边列有三层3个小正方形,中间列两层2个小正方形,右边列有一层1个小正方形,根据看到的图形可画出左视图,俯视图是从上向下看得到的图形,图形分三列,上对齐,左边列有3个小正方形,中间列2个小正方形,右边列有1个小正方形,根据看到的图形可画出俯视图【点睛】本题考查简单组合体的三视图,掌握三视图的定义是解题关键5、(1)24;(2)见解析【分析】(1)根据三视图可求出几何体的表面积;(2)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1据此可画出图形【详解】解:(1)该几何体的表面积是:4×25×23×224(cm2),故答案为: 24;(2)如图所示:【点睛】本题考查几何体的三视图画法以及几何体的表面积,关键是掌握三视图所看的位置,掌握几何体表面积的计算方法