精品解析2022年京改版七年级数学下册第六章整式的运算同步测评试题.docx
-
资源ID:30772318
资源大小:281.07KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年京改版七年级数学下册第六章整式的运算同步测评试题.docx
京改版七年级数学下册第六章整式的运算同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48;第二次输出的结果为24,则第2019次输出的结果为()A0B1C2D12、下列关于单项式2x2y的说法正确的是()A系数是1,次数是2B系数是2,次数是2C系数是1,次数是3D系数是2,次数是33、 “数形结合”是一种重要的数学思维,观察下面的图形和算式: 解答下列问题:请用上面得到的规律计算:21232527101( )ABCD4、若,则的值为( )ABC1D5、下列数字的排列:2,12,36,80,那么下一个数是( )A100B125C150D1756、已知:x22x50,当y1时,ay34by3的值等于4,则当y1时,2(x2by)(x2ay3)的值等于( )A1B9C4D67、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A593B595C597D5998、下列运算正确的是()A3a+2a5a2B8a2÷4a2aC4a23a312a6D(2a2)38a69、下列运算正确的是( )ABCD10、下列各式中,计算结果为x10的是()Ax5+x5Bx2x5Cx20÷x2D(x5)2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式xy2的系数为 _2、有一列按规律排列的代数式:b,2ba,3b2a,4b3a,5b4a,相邻两个代数式的差都是同一个整式,若第1011个代数式的值为3,则前2021个代数式的和的值为_3、单项式a2h的次数为 _4、黑白两种颜色的纸片,按如图所示的规律拼成若干个图案,第n个图形有白纸片_张 5、单项式的系数是_,次数是_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值,其中,2、完全平方公式:适当的变形,可以解决很多的数学问题例如:若,求的值解:因为所以所以得根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积3、计算:(1);(2);(3);(4)4、计算:(1) (2)5、如图,甲、乙两块长方形苗圃的长与宽相同,分别为,中间都有两条横、竖交错的通道甲苗圃横、竖通道的宽分别为,乙苗圃横、竖通道的宽分别为(1)用含x的式子表示两苗圃通道的面积(2)比较的大小,并求两者之差-参考答案-一、单选题1、B【分析】按照程序进行计算,发现规律,利用规律求解即可【详解】解:当输入x96时,第一次输出96×48;当输入x48时,第二次输出48×24;当输入x24时,第三次输出24×12;当输入x12时,第四次输出12×6;当输入x6时,第五次输出6×3;当输入x3时,第六次输出3×318;当输入x8时,第七次输出8×4;当输入x4时,第八次输出4×2;当输入x2时,第九次输出2×1;当输入x1时,第十次输出3×112;从第8次开始,以2,1的形式循环出现,(20197)÷21006,第2019次输出的结果为:1故选:B【点睛】本题考查了有理数的运算,解题关键是根据运算结果发现规律,利用规律解题2、D【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可【详解】解:单项式2x2y的系数为2,次数为3故选:D【点睛】本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键3、B【分析】由题意根据图形和算式的变化发现规律,进而根据得到的规律进行计算即可【详解】解:观察以下算式:1=1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52发现规律:1+3+5+7+9+19=100=1021+3+5+7+9+19+21+23+25+27+101=51221+23+25+27+101=512-102=2501故选:B【点睛】本题考查规律型-图形的变化类、有理数的混合运算,解决本题的关键是根据图形和算式的变化寻找规律,并运用规律4、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答【详解】解:,=3÷8=,故选D【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则5、C【分析】由2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,可得第n个数为n3+n2,由此求解即可【详解】解:2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,下一个数是53+52=125+25=150(第n个数为n3+n2)故选C【点睛】本题主要考查了数字类的规律探索,根据题意找到规律是解题的关键6、D【分析】根据题意得到a+4b1,x22x5,当y1时可得出2(x+2by)+(x2ay3)2x+4b+x2+a,最后将x22x5,a+4b1代入该式即可求出答案【详解】解:当y1时,ay3+4by+3a+4b+34,a+4b1,x22x50, x22x5,当y1时,2(x+2by)+(x2ay3)2x4by+x2ay32x+4b+x2+aa+4b1,x22x5,2x+4b+x2+a2x+x2+a+4b5+16故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b1,x22x5,并整体代入是解题关键7、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形依此规律即可得出答案【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:依此规律,第个图案中小正方形的个数为: ,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可8、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可【详解】A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意; D. ,故该选项正确,符合题意;故选:D【点睛】本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方掌握各运算法则是解答本题的关键9、B【分析】根据幂的运算和乘法公式逐项判断即可【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式10、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可【详解】解:A、x5+x52x5,故A不符合题意;B、x2x5x7,故B不符合题意;C、x20÷x2x18,故C不符合题意;D、(x5)2x10,故D符合题意;故选D【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键二、填空题1、【分析】根据单项式的系数的定义即可求解【详解】单项式xy2的系数为故答案为:【点睛】此题主要考查单项式的系数,解题的关键是熟知单项式的系数的定义:指单项式中字母前面的数2、6063【分析】相邻两个代数式的差都是b-a,且第1011个代数式的值为1011b-1010a=3,将前2021个代数式全部求出后,求出它们的和后将1011b-1010a代入即可求出答案【详解】解:由题意可知:第1011个代数式的值为1011b-1010a=3第2020个代数式为:2020b-2019a,第2021个代数式为:2021b-2020a,前2021个代数式的和的值:b+(2b-a)+(2021b-2020a)=(1+2+3+2021)b-(1+2+3+2020)a=2021(1011b-1010a)=2021×3=6063故答案为:6063【点睛】本题考查代数式求值,解题的关键是将前2021个代数式的和进行化简3、3【分析】直接根据一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案【详解】解:单项式a2h的次数是:2+1=3故答案为:3【点睛】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键4、(3n+1)n)【分析】先求出每一个图形的白色纸片的块数,找出规律,后一个图形比前一个图形的白色纸片多3块,然后总结出第n个图形的表示纸片的块数;【详解】解:第1个图形有白色纸片有:43+1块,第2个图形有白色纸片有:73×2+1块,第3个图形有白色纸片有:103×3+1块,第n个图形有白色纸片:3n+1块,故答案为:(3n+1)【点睛】本题考查了图形的变化规律,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键5、 5 【分析】根据单项式系数、次数的定义即可求解【详解】解:单项式的系数是,次数是5故答案为,5【点睛】本题考查了单项式的系数和次数,单项式的系数指单项式中的数字因数,次数指单项式中所有字母的指数和,注意是常数三、解答题1、,-11【解析】【分析】先去括号,合并同类项,再将字母的值代入计算即可【详解】解: =当,时,原式=-11【点睛】此题考查了整式加减中的化简求值,正确掌握整式的加减计算法则是解题的关键2、(1);(2)17;(3)【解析】【分析】(1)仿照题意,利用完全平方公式求值即可;(2)先求出,然后仿照题意利用完全平方公式求解即可;(3)设AC的长为a,BC的长为b,则AB=AC+BC=a+b=6,由,得到,由此仿照题意,利用完全平方公式求解即可【详解】解:(1),;(2),故答案为:17;(3)设AC的长为a,BC的长为b,AB=AC+BC=a+b=6,又四边形BCFG是正方形,CF=CB,【点睛】本题主要考查了完全平方公式的变形求值,解题的关键在于能够准确读懂题意3、(1)-11;(2)5;(3);(4)x2【解析】【分析】(1)由题意先将减法统一成加法,然后再计算;(2)根据题意先将除法统一成乘法,然后再计算;(3)由题意先算乘方,然后算乘除,最后算加减;(4)根据题意先去括号,然后合并同类项进行化简即可【详解】解:(1)=5+3+(-7)+(-12)=8+(-7)+(-12)=1+(-12)=-(12-1)=-11;(2)=5;(3)=;(4)=x2【点睛】本题主要考查有理数的混合运算,整式的加减运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题的关键4、(1);(2)【解析】【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1) (2) 【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.5、(1),;(2),【解析】【分析】(1)利用长乘以宽将两条小路的面积相加计算即可;(2)由x>0,得到36x>33x,推出,根据整式加减法计算两者的差【详解】解:(1),;(2)x>0,36x>33x,即,【点睛】此题考查了列代数式,式子的大小比较,整式的加减计算法则,根据图形正确列出代数式是解题的关键