精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题测评练习题(名师精选).docx
-
资源ID:30772512
资源大小:630.23KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题测评练习题(名师精选).docx
九年级数学下册第一章直角三角形的边角关系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC的顶点是正方形网格的格点,则sinACB的值为()A3BCD2、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD3、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:; 点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD4、已知RtABC中,则的值为( )ABCD5、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE6、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()ABCD7、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD8、在正方形网格中,ABC在网格中的位置如图,则sinB的值为()ABCD9、在中,C=90°,A、B、C的对边分别为、,则下列式子一定成立的是( )ABCD10、的值为( )A1B2CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知斜坡AB的水平宽度为12米,斜面坡度为,则斜坡AB的长为_;坡角为_2、计算:_3、已知:如图,AB是O的直径,半径OCAB,过CO的中点D作DEAB交O于点E,连接EO,则EOC的度数为_4、如图,矩形ABCD中,DEAC于点E,ADE,cos,AB4,AD长为_5、如图,中,D为边上一动点(不与B,C重合),和的垂直平分线交于点E,连接、和、与的交点记为点F下列说法中,;当时,正确的是_(填所有正确选项的序号)三、解答题(5小题,每小题10分,共计50分)1、(1)计算:2cos30°(1)2021;(2)解方程组:2、先化简,再求代数式()÷的值,其中atan60°+2sin45°3、计算:(1);(2)4、(1)计算:(2)如图,在菱形ABCD中,于点E,求菱形的边长5、如图, 在 中, 点 分别在 边和 边上,沿着直线 翻折 ,点 落在 边上,记为点 ,如果 ,则 _-参考答案-一、单选题1、D【分析】连接格点AD,构造直角三角形,先计算AC,再算ACB的正弦即可【详解】连接格点A、D,如图在RtADC中,AD3,CD1,CAsinACB故选:D【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键2、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化3、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90°,CEBH,BFC=BCF+CBF=CBF+ABH=90°,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90°,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键4、A【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C90°,AC2,BC1,由勾股定理,得AB,cosB,故选:A【点睛】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边5、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90°,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90°,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90°,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90°,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90°,CBF+BEA90°,BGE90°,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解6、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出ABD为等腰直角三角形,再根据45°角的余弦值即可得出答案【详解】解:如图所示,过点A作ADBC交BC延长线于点D,AD=BD=4,ADB=90°,ABD为等腰直角三角形,B=45°故选B【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解7、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k21×33故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标8、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键9、B【分析】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可【详解】解:由题意可得,如下图:,则,A选项错误,不符合题意;,则,B选项正确,符合题意;,则,C选项错误,不符合题意;,则,D选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解10、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键二、填空题1、 30°度 【分析】如图,由题意得:再利用坡度的含义求解 再利用的余弦函数值求解即可.【详解】解:如图,由题意得: 又 而 故答案为:【点睛】本题考查的是解直角三角形的应用,坡度,坡角的含义,由坡度求解出坡角为是解本题的关键.2、【分析】根据特殊的三角函数值解答即可【详解】解:,故答案为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键3、60°【分析】由D是OC的中点,得到,然后证明EDO=90°,即可得到DEO=30°则DOE=90°,即EOC=60°【详解】解:D是OC的中点,OCAB,AOC=90°,EDAB,EDO=90°,DEO=30°,DOE=60°,即EOC=60°,故答案为:60°【点睛】本题主要考查了圆的基本性质,平行线的性质,垂线的定义,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解4、【分析】将已知角度的三角函数转换到所需要的三角形中,得到ADE=DCE=,求出AC的值,再由勾股定理计算即可【详解】ADC=AED=90°,DAE+ADE=ADE+CDE=90°DAE =CDE又DCE+CDE=90°ADE=DCE=cos=又矩形ABCD中AB=CD=4AC=在中满足勾股定理有故答案为:【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键5、【分析】先证AED=90°,再利用2+DAB=3+DAB=45°,得出2=3可判断;利用EAF和3的余弦值相等判断;利用ACDAEF及勾股定理可判断;设BM=a,用含a的式子表示出和即可判断【详解】AC=BC,C=90°,3+DAB=CAB=ABC=45°,和的垂直平分线交于点E,AE=ED=BE,1=2,1+CBA=EDBCAB+2=1+CBA,EDB=CAE,EDB+CDE=180°,CAE+CDE=180°,CAE+C+CDE+AED=360°,C+AED=90°,C=90°,AED=90°,AE=ED,2+DAB=3+DAB=45°,2=3,ACDAEF,故正确;AED为等腰直角三角形,AD=ED,cosEAF=cos3=,故正确;ACDAEF,在RtAED中,AE=AD,故错误;BEAD,BEAD,DAB=1,2+1=1+DAB=45°,过点B作BMAE交AE的延长线于点M,MEB=2+1=45°,EM=BM,设BM=a,则EM=a,BE=a,AE=a,=,故错误故答案为:【点睛】本题考查了线段垂直平分线的性质,相似三角形的判定与性质,勾股定理及三角函数值等知识点,解题的关键是正确作出辅助线三、解答题1、(1)1;(2)【分析】(1)利用二次根式性质,负整数指数幂法则,特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)利用代入消元法求出解即可【详解】解:(1)原式222×(1)22+11;(2),由得:x2y3,把代入得:6y9y+5,解得:y2,把y2代入得:x1,则方程组的解为【点睛】本题考查了实数计算和解方程组,解题关键是熟记特殊角三角函数值,熟练运用负指数、二次根式和解二元一次方程组的方法求解2、;【分析】先根据分式的混合运算顺序和运算法则化简原式,再结合特殊锐角的函数值求出a的值,进而代入最简分式计算即可【详解】解:,=,=,tan60°=,sin45°=, ,原式【点睛】本题主要考查分式的化简求值及特殊锐角的三角函数值,二次根式乘除混合运算解题的关键是掌握分式的混合运算顺序和运算法则,二次根式乘除混合运算法则及特殊锐角的三角函数值3、(1);(2)1【分析】(1)用公式法求解即可;(2)根据特殊角的三角函数值、零指数幂和负整数指数幂、二次根式的性质计算即可【详解】(1),(2)原式【点睛】本题考查了解一元二次方程,特殊角的三角函数值、零指数幂和负整数指数幂、二次根式的性质等知识,熟练掌握并灵活运用这些知识是关键4、(1)1;(2)13【分析】(1)根据特殊角的三角函数值、负整数指数幂及实数的绝对值的含义即可完成;(2)根据菱形的性质可得AB=AD,再由已知条件设,则由勾股定理可得AE,则由BE=8建立方程即可求得k,从而求得菱形的边长【详解】解:(1)原式.(2)四边形ABCD是菱形,.,设,则,即菱形的边长为13.【点睛】本题考查了特殊角的三角函数值、负整数指数幂及实数的绝对值,菱形的性质、三角函数及勾股定理,灵活运用这些知识是关键5、#【分析】过点作于点,设,则,解直角三角形即可求得,即的值【详解】解:如图,过点作于点在 中,是等腰直角三角形=设,则,沿着直线翻折,点落在边上,记为点,在中,即解得故答案为:【点睛】本题考查了勾股定理,轴对称的性质,解直角三角形,根据题意构造直角三角形是解题的关键