精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项练习试卷(含答案详解).docx
-
资源ID:30773074
资源大小:286.01KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项练习试卷(含答案详解).docx
初中数学七年级下册第九章不等式与不等式组专项练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若,则下列不等式不一定成立的是( )ABCD2、不等式x+20的解在数轴上的表示正确的是()ABCD3、如果ab,下列各式中正确的是( )A2021a2021bB2021a2021bCa2021b2021D2021a2021b4、若成立,则下列不等式不成立的是( )ABCD5、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )A-3B3C-4D46、由xy得axay的条件应是( )Aa0Ba0Ca0Db07、已知关于的不等式的解集为,则的取值范围是( )ABCD8、已知关于x的不等式组的解集中任意一个x的值均不在1x3的范围内,则a的取值范围是()A5a6Ba6或a5C5a6Da6或a59、对有理数a,b定义运算:ab=ma +nb,其中m,n是常数,如果34=2,58>2,那么n的取值范围是( )An>Bn<Cn>2Dn<210、下列选项正确的是( )A不是负数,表示为B不大于3,表示为C与4的差是负数,表示为D不等于,表示为二、填空题(5小题,每小题4分,共计20分)1、若mn,则mn_0(填“”或“”或“”)2、已知关于x的不等式组无解,则a的取值范围是_3、说出下列不等式的变形是根据不等式的哪一条性质:(1)由x3,得x6;_;(2)由3x5,得x2;_;(3)由2x6,得x3;_;(4)由3x2x4,得x4._4、若有意义,则x的取值范围为_5、如果,那么_0三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组):(1),并把它的解集在数轴上表示出来(2)解一元一次不等式组,并写出它的整数解2、解不等式(组):(1)4(x1)5x+2(2)3、解不等式组,并把解集表示在数轴上4、为了打造区域中心城市,实现跨越式发展,某市花城新区建设正按投资计划有序推进花城新区建设工程部因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机的有关信息如下表所示:型号租金(单位:元/台·时)挖掘土石方量(单位:m3/台·时)甲型10060乙型12080(1)用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机分别需要租多少台?(2)每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案(每种型号的挖掘机至少租一台)?5、解不等式组求它的整数解:-参考答案-一、单选题1、D【分析】根据不等式的性质判断即可【详解】解:A、两边都加2,不等号的方向不变,故A不符合题意;B、两边都乘以2,不等号的方向不变,故B不符合题意;C、两边都除以2,不等号的方向不变,故C不符合题意;D、当b0a,且时,a2b2,故D符合题意;故选:D【点睛】本题主要考查了不等式的基本性质(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变2、D【分析】先求出不等式的解集,再在数轴上表示出来即可【详解】解:移项得,x2,在数轴上表示为:,故选:D【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键3、C【分析】根据不等式的性质即可求出答案【详解】解:A、ab,2021a2021b,故A错误;B、ab,2021a2021b,故B错误;C、ab,a2021b2021,故C正确;D、ab,2021a2021b,故D错误;故选:D【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型4、D【分析】根据不等式的性质逐项判断即可【详解】解:A、给两边都减去1,不等号的方向不变,故本选项正确,不符合题意;B、给两边都加上x,不等号的方向不变,故本选项正确,不符合题意;C、给两边都除以2,不等号的方向不变,故本选项正确,不符合题意;D、给两边都乘以3,不等号的方向要改变,故本选项不正确,符合题意,故选:D【点睛】本题考查不等式的性质,熟练掌握不等式的性质,注意不等号的方向是解答的关键5、A【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解【详解】解:由关于x的不等式组解得关于x的不等式组有且只有3个奇数解,解得关于y的方程3y+6a=22-y,解得关于y的方程3y+6a=22-y的解为非负整数,且为整数解得且为整数又,且为整数符合条件的有、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键6、B【分析】由不等式的两边都乘以 而不等号的方向发生了改变,从而可得.【详解】解: 故选B【点睛】本题考查的是不等式的性质,掌握“不等式的两边都乘以同一个负数,不等号的方向改变”是解本题的关键.7、C【分析】由题意直接根据已知解集得到,即可确定出的范围【详解】解:不等式的解集为,解得:故选:C【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键8、B【分析】根据解不等式组,可得不等式组的解集,根据不等式组的解集是与1x3的关系,可得答案【详解】解:不等式组,得a3xa+4,由不等式组的解集中任意一个x的值均不在1x3的范围内,得a+41或a33,解得a5或a6,故选:B【点睛】本题考查了不等式的解集,利用解集中任意一个x的值均不在1x3的范围内得出不等式是解题关键9、A【分析】先根据新运算的定义和34=2将用表示出来,再代入58>2可得一个关于的一元一次不等式,解不等式即可得【详解】解:由题意得:,解得,由58>2得:,将代入得:,解得,故选:A【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键10、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案【详解】解:不是负数,可表示成,故本选项不符合题意;不大于3,可表示成,故本选项不符合题意;与4的差是负数,可表示成,故本选项符合题意;不等于,表示为,故本选项不符合题意;故选:C【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“”二、填空题1、【分析】根据不等式的性质即可得出结论【详解】解:mn,mn0,故答案为:【点睛】本题考查了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变即如果ab,那么a±cb±c2、【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可【详解】解:由得:由得:不等式组无解故答案为【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找3、不等式的基本性质2 不等式的基本性质1 不等式的基本性质3 不等式的基本性质1 【分析】根据不等式的基本性质依次分析各小题即可得到结果【详解】(1)由x3,根据不等式的基本性质2,两边同时乘以2得x6;(2)由3x5,根据不等式的基本性质1,两边同时减去3得x2;(3)由2x6,根据不等式的基本性质3,两边同时除以2得x3;(4)由3x2x4,根据不等式的基本性质1,两边同时减去2x得x4.故答案为:不等式的基本性质2;不等式的基本性质1;不等式的基本性质3,不等式的基本性质1【点睛】本题考查了不等式的性质不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变4、且【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解【详解】解:由题意得:,且解得:且故答案为:且【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键5、【分析】由可得:异号,又与同号,所以而,即可求解【详解】解:由可得:异号,又与同号,所以而,所以,故答案为:【点睛】本题考查不等式的性质,得出与同号是解题关键三、解答题1、(1),数轴见解析;(2),整数解是-3,-2,-1,0【解析】【分析】(1)依次去括号、移项、合并同类项、系数化为1即可得;(2)先求出两个不等式的解集,再求其公共解【详解】解:(1)去括号,得:2x-11<4x-12+3,移项,得:2x-4x<-12+3+11,合并同类项,得:-2x<2,系数化为1,得:x>-1,将不等式的解集表示在数轴上如下:(2),解不等式,得x-,解不等式,得x<,原不等式组的解为-x<,则不等式组的整数解是-3,-2,-1,0【点睛】本题考查了解一元一次不等式、不等式组的整数解和解一元一次不等式组,能求出不等式的解集是解此题的关键2、(1);(2)【解析】【分析】(1)利用去括号,移项,合并同类项,系数化1,解不等式即可;(2)分别解不等式,利用不等式组的解集法则确定方法求解集即可;【详解】解:(1)4(x1)5x+2,去括号得:,移项合并同类项得:,系数化1得:故不等式的解集为:;(2),解不等式得:,解不等式得:,故不等式组的解集为:【点睛】本题主要考查解一元一次不等式和不等式组,求不等式组的解集,要遵循:同大取大,同小取小,大小小大取中间,大大小小解为空,正确的求解出不等式或不等式组的解集是解题的关键3、,图见解析【解析】【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题【详解】解:由得 由得 把不等式组的解集表示在数轴上,如图,原不等式组的解为【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键4、(1)甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台【解析】【分析】(1)设甲种型号的挖掘机需要租台,从而可得乙种型号的挖掘机需要租台,再根据“恰好完成每小时的挖掘量”建立方程,解方程即可得;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,根据“每小时支付的租金不超过850元,又恰好完成每小时的挖掘量”建立不等式和方程,再结合为正整数进行分析即可得【详解】解:(1)设甲种型号的挖掘机需要租台,则乙种型号的挖掘机需要租台,由题意得:,解得,答:甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,由题意得:,解得,因为为正整数,所以分以下四种情况进行讨论:当时,符合题意;当时,不符题意,舍去;当时,不符题意,舍去;当时,不符题意,舍去;综上,共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键5、不等式组的解集为,不等式组的整数解为3【解析】【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可【详解】解:解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为3【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法