精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专项测评试卷(名师精选).docx
-
资源ID:30773900
资源大小:351.91KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专项测评试卷(名师精选).docx
章节同步练习2022年·浙教版初中数学 七年级下册知识点习题·定向攻克·含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学2、已知,则的值是( )A.6B.6C.1D.13、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.4、下列由左边到右边的变形中,属于因式分解的是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)5、下列等式中,从左到右的变形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4mn)C.x2+2xx(x2)D.x22x+3x(x2)+36、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)27、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解8、多项式的因式为( )A.B.C.D.以上都是9、下列各式中,因式分解正确的是( )A.B.C.D.10、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)211、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)12、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.13、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)214、若多项式能因式分解为,则k的值是( )A.12B.12C.D.615、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:213(1)3,263313,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二、填空题(10小题,每小题4分,共计40分)1、已知,则的值等于_2、多项式x3yxy的公因式是_3、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_4、因式分解:_5、由多项式与多项式相乘的法则可知:即:(ab)(a2abb2)a3a2bab2a2bab2b3a3b3即:(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方和公式同理,(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方差公式请利用公式分解因式:64x3y3_6、因式分解:_7、若,则_8、下列多项式:;,它们的公因式是_9、分解因式:3mn212m2n_10、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1); (2)2、因式分解:x316x3、因式分解:-参考答案-一、单选题1、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.2、B【分析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.3、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.4、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.x2+2xx(x2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.6、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.8、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.9、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,无法分解因式,故此选项不合题意;,故此选项符合题意;.,故此选项不合题意;故选:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.10、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.11、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.12、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.13、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、A【分析】根据完全平方公式先确定a,再确定k即可.【详解】解:解:因为多项式能因式分解为,所以a=±6.当a=6时,k=12;当a=-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.15、B【分析】根据“和谐数”的概念找出公式:(2k+1)3(2k1)32(12k2+1)(其中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3(2k1)3(2k+1)(2k1)(2k+1)2+(2k+1)(2k1)+(2k1)22(12 k2+1)(其中 k为非负整数),由2(12k2+1)2019得,k9,k0,1,2,8,9,即得所有不超过2019的“和谐数”,它们的和为13(1)3+(3313)+(5333)+(173153)+(193173)193+16860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.二、填空题1、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.2、xy【分析】根据公因式的找法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.【详解】解:多项式x3yxy的公因式是xy.故答案为:xy.【点睛】此题考查了找公因式,关键是掌握找公因式的方法.3、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=3×4,=12.故答案为:12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.4、【分析】根据十字相乘法分解即可.【详解】解:=,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.5、【分析】根据题意根据立方差公式因式分解即可.【详解】64x3y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.6、【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.7、15【分析】将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.【详解】解:x2y5,xy3, .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.8、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点睛】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.9、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(n4m).故答案为:3mn(n4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.10、【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式,故答案为:.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.三、解答题1、(1);(2)【分析】(1)利用平方差公式分解因式即可得到答案;(2)先提取公因式“3n”,再利用完全平方公式分解因式即可得到答案.【详解】解:(1);(2).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、x(x+4)(x-4).【分析】原式提取x,再利用平方差公式继续分解即可.【详解】解:x316x=x(x2-16)=x(x+4)(x-4).【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、【分析】根据平方差公式“”进行解答即可得.【详解】解:原式=【点睛】本题考查了因式分解,解题的关键是掌握平方差公式.