欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    精品试题北师大版九年级数学下册第二章二次函数单元测试练习题(无超纲).docx

    • 资源ID:30774065       资源大小:524.49KB        全文页数:25页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    精品试题北师大版九年级数学下册第二章二次函数单元测试练习题(无超纲).docx

    北师大版九年级数学下册第二章二次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关系式中,属于二次函数的是()AyByCyDyx32x2、若抛物线平移得到,则必须( )A先向左平移4个单位,再向下平移1个单位B先向右平移4个单位,再向上平移1个单位C先向左平移1个单位,再向下平移4个单位D先向右平移1个单位,再向下平移4个单位3、一次函数与二次函数在同一平面直角坐标系中的图象大致是( )ABCD4、抛物线y2(x1)22图象与y轴交点的坐标是()A(0,2)B(0,2)C(0,0)D(2,0)5、已知抛物线的解析式为,则这条抛物线的顶点坐标是( )ABCD6、已知二次函数的图象如图所示,则下列结论正确的是( )ABCD7、已知:二次函数yax2bxc(a0)的图象如图所示,下列结论中:abc0;2ab0;abc0;当x1时,y随x的增大而增大;a1,其中正确的项是( )ABCD8、如图1所示,DEF中,DEF90°,D30°,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D489、在平面直角坐标系中,将抛物线yx24x向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()Ay(x+1)2+1By(x+1)29Cy(x5)2+1Dy(x5)2910、下列二次函数的图象与x轴没有交点的是( )Ay3x22xByx23x4Cyx24x4Dyx24x5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x2,点C在抛物线上,且位于点A、B之间(C不与A、B重合)若ABC的周长为5,则四边形AOBC的周长为 _2、如图,二次函数yax2bxc的图像过点A(3,0),对称轴为直线x1,则不等式ax2bxc>0时x的取值范围是_3、通过_法画出和的图像:通过图像可知:的开口方向_,对称轴_,顶点坐标_的开口方向_,对称轴_,顶点坐标_4、已知P(,),Q(,)两点都在抛物线上,那么_5、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_三、解答题(5小题,每小题10分,共计50分)1、学习完二次函数后,某班“数学兴趣小组”的同学对函数的图象和性质进行了探究在经历列表、描点、连线步骤后得到其图象如图所示请根据函数图象完成以下问题:(1)观察发现:写出该函数的一条性质_;函数图象与轴有_个交点,所以对应的方程有_个实数根;(2)分析思考:方程的解为_;关于的方程有4个实数根时,的取值范围是_;(3)延伸探究:将函数的图象经过怎样的平移可以得到函数的图象,直接写出平移过程2、在平面直角坐标系xOy中,对于抛物线yax2x+1(a0)(1)求抛物线yax2x+1的顶点坐标;(2)当1x2时,y的最大值为7,求a;(3)分别过点M(t,0)和点N(t+1,0)作x轴垂线,交抛物线于点A和B记抛物线在A,B两点之间的部分为图象G(包括A,B两点),若对于任意的t,在图象G上都存在两点,且这两点纵坐标的差的绝对值不小于1,请直接写出a的最小值3、已知二次函数(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点和都在此函数的图象上,且,结合函数图象,直接写出的取值范围4、某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度(单位:m)与行进的水平距离(单位:m)之间关系的图象如图所示已知篮球出手位置与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m(1)图中点表示篮筐,其坐标为_,篮球行进的最高点的坐标为_;(2)求篮球出手时距地面的高度5、如图,在平面直角坐标系中,二次函数yx2bxc的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4),点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的解析式和直线AD的解析式;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值-参考答案-一、单选题1、A【分析】二次函数为形如的形式;对比四个选项,进而得到结果【详解】解:A符合二次函数的形式,故符合题意;B中等式的右边不是整式,故不是二次函数,故不符合题意;C中等式的右边分母中含有,但是分式,不是整式,故不是二次函数,故不符合题意;D中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A【点睛】本题考察了二次函数的概念解题的关键与难点在于理清二次函数的概念2、B【分析】根据两抛物线的顶点坐标即可确定平移的方向与距离,从而完成解答【详解】抛物线的顶点为(4,1),而抛物线的顶点为原点由题意,把抛物线的顶点先向右平移4个单位,再向上平移1个单位,即可得到抛物线的顶点,从而抛物线先向右平移4个单位,再向上平移1个单位即可得到故选:B【点睛】本题考查了二次函数图象的平移,关键是抓住抛物线顶点的平移3、C【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论【详解】解:A.二次函数图象开口向下,对称轴在y轴右侧,a<0,b>0,一次函数图象应该过第一、二、四象限,A错误;B.二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,一次函数图象应该过第一、三、四象限,B错误;C.二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,一次函数图象应该过第二、三、四象限,C正确;D. 二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,一次函数图象应该过第一、三、四象限,D错误;故选C【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键4、C【分析】结合题意,根据二次函数图像的性质,当时,计算y的值,即可得到答案【详解】当时, 抛物线y2(x1)22图象与y轴交点的坐标是:(0,0)故选:C【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数图像的性质,从而完成求解5、B【分析】利用抛物线解析式即可求得答案【详解】解:,抛物线顶点坐标为,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,顶点坐标为(h,k),对称轴为xh6、D【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴左侧,得到a与b同号,可得出b0,又抛物线与y轴交于正半轴,得到c大于0,可判断选项A;由x=-1时,对应的函数值大于0,可判断选项B;由x=-2时对应的函数值小于0,可判断选项C;由对称轴大于-1,利用对称轴公式得到b2a,可判断选项D【详解】解:由抛物线的开口向下,得到a0,-0,b0,由抛物线与y轴交于正半轴,得到c0,abc0,故选项A错误;x=-1时,对应的函数值大于0,a-b+c0,故选项B错误;x=-2时对应的函数值小于0,4a-2b+c0,故选项C错误;对称轴大于-1,且小于0,0-1,即0b2a,故选项D正确,故选:D【点睛】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否7、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由对称轴0x1,得出b<0,则abc>0,故正确;对称轴0x1,-1,a0,-b<2a,2a+b>0,故错误;把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y0,即a-b+c0,故错误;由图象得,当x1时,y随x的增大而增大,故正确;由图象知,函数图象过(-1,2),(1,0)两点,代入解析式得, 得, ,故正确正确的项是故选:B【点睛】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值8、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键9、A【分析】先将抛物线配方为顶点式,根据抛物线平移规律“左加右减,上加下减”解答即可【详解】解:将抛物线配方为顶点式,将抛物线先向左平移3个单位,再向上平移5个单位,得到的抛物线的解析式是y(x-2+3)24+5,即故选:A【点睛】本题考查抛物线的平移,熟练掌握抛物线平移规律是解答的关键10、D【分析】将函数交点问题,转化为求方程根,然后分别计算判别式的值,来判断抛物线与x轴的交点个数即可【详解】A、=22-4×(-3)×0>0,此抛物线与x轴有两个交点,所以A选项错误;B、=(-3)2-4×1×(-4)>0,此抛物线与x轴有两个交点,所以B选项错误;C、=(-4)2-4×1×4=0,此抛物线与x轴有1个交点,所以C选项错误;D、=42-4×1×5<0,此抛物线与x轴没有交点,所以D选项正确故选:D【点睛】本题考查的是函数图象与x轴的交点的判断,熟练掌握方程与函数的联系及根的判别式是正确解答本题的关键二、填空题1、9【分析】根据抛物线的对称性得到:OB=4,AB=AO,则四边形AOBC的周长为:AO+AC+BC+OB=ABC的周长+OB【详解】解:根据题意,对称轴为直线x=2,抛物线经过原点、x轴负半轴交于点B,OB=4,由抛物线的对称性知AB=AO,四边形AOBC的周长为AO+AC+BC+OB=ABC的周长+OB=5+4=9故答案为:9【点睛】本题考查了二次函数的性质此题利用了抛物线的对称性,解题的技巧性在于把求四边形AOBC的周长转化为求(ABC的周长+OB)是值2、【分析】由题意易得抛物线与x轴的另一个交点为(-1,0),然后根据图象可进行求解【详解】解:二次函数yax2bxc的图像过点A(3,0),对称轴为直线x1,由二次函数的对称性可得抛物线与x轴的另一个交点为(-1,0),ax2bxc>0,由图象可知x的取值范围是;故答案为【点睛】本题主要考查二次函数与不等式的关系,熟练掌握二次函数的图象与性质是解题的关键3、描点 向上 y轴 向上 y轴 【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可【详解】解:通过描点法画出和的图像,通过图像可知:的开口方向向上,对称轴为轴,顶点坐标为,的开口方向向上,对称轴轴,顶点坐标,故答案为:描点;向上;y轴;向上;y轴;【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键4、4【分析】根据P(,),Q(,)的纵坐标相等,得出关于抛物线对称轴对称,即可求解【详解】解:P(,),Q(,)两点都在抛物线上,根据纵坐标相等得,P(,),Q(,)关于抛物线的对称轴对称,故答案是:4【点睛】本题考查了二次函数的图象的性质,解题的关键是掌握二次函数的对称性求解5、【分析】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)绕O点逆时针旋转90°后,与x轴的交点为(-k,0)即(0,k),(1,0),(-k,0)过抛物线()即得将代入有整理得解得k=3或k=-1(舍)将k=3代入得故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键三、解答题1、(1)图象关于轴对称(答案不唯一);2,2 ;(2),;先向右平移1个单位,再向上平移2个单位【分析】(1)观察图像即可写出一条性质;根据图像即可写出函数图象与轴的交点及对应方程的解得个数;(2)根据函数图像与y=1的交点坐标即可求解;根据图像与y=m有4个交点即可求出的取值范围;(3)根据二次函数的平移方法即可求解【详解】(1)函数的性质:图象关于轴对称;时随的增大而增大函数图象与轴有2个交点,所以对应的方程有2个实数根;故答案为:图象关于轴对称(答案不唯一);2;2;(2)如图,作y=1,与函数交于(-2,1)、(0,1)、(2,1),故方程的解为,;如图,作y=m,关于的方程有4个实数根,故的取值范围是;故答案为:,;(3)二次函数的平移方法可知:将函数的图象经过先向右平移1个单位,再向上平移2个单位可以得到函数的图象【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数的图象与性质、数形结合的思想2、(1)顶点坐标为(,)(2)(3)的最小值为1【分析】(1)先求出函数的对称轴,将对称轴代入二次函数解析式,求出顶点纵坐标(2)根据对称轴是否在x的取值范围的中间值的左右两侧,分成两类情况进行讨论即可(3)先明确只要使得上的最大值与最小值之差不小于1,就能找到满足条件的两点,由于不固定,故最后要找到所有中,使得最大值与最小值之差最小的那个,此时只需让最小的差值不小1即可,此时利用不等式,就可求出的取值范围,进而得到的最小值【详解】(1)解:抛物线的对称轴为直线 将代入抛物线解析式中,求得 抛物线顶点坐标为(,)(2)解:由(1)可知:抛物线的对称轴为:,且抛物线开口向上,当12时,按照对称轴在的取值范围的中间值左右两侧,分为两类情况求解抛物线的最大值,情况1:当,即时,此时:时,有最大值为7,故,解得: , ,情况2:当,即时,此时:时,有最大值为7,故,解得:,不符合题意,综上所述: (3)解:若对于任意的t,在图象G上都存在两点,且这两点纵坐标的差的绝对值不小于1,故只需要对于每一个固定的中的最大值与最小值之差都不小于1即可,对于不同的的取值范围,其取值范围上的最大值与最小值之差都不相同,需要在所有的的取值范围中找到最大值与最小值之差最小的那一个,由二次函数的性质可知:当对称轴处在 的中间位置时,即,此时的最大值与最小值之差在整个的取值中最小,此时:,有最小值为:, 时, 有最大值为:,解得: ,的最小值为1【点睛】本题主要是考查了二次函数的对称轴、动点区间求最值问题,根据题意,找到分类讨论的依据,利用二次函数的图像与性质,正确找出最大值与最小值,这是解题的关键3、(1)抛物线对称轴为直线,顶点坐标为(-2,-1);(2)见解析;(3)或【分析】(1)把抛物线解析式化为顶点式求解即可;(2)先列表,然后描点,最后连线即可;(3)根据函数图像求解即可【详解】解:(1)抛物线解析式为,抛物线对称轴为直线,顶点坐标为(-2,-1);(2)列表如下:-4-3-2-1030-103函数图像如下所示:(3)由函数图像可知,当时,或【点睛】本题主要考查了二次函数图像的性质,画二次函数图像,图像法求自变量的取值范围,熟知二次函数的相关知识是解题的关键4、(1)(4.5,3.05),(3,3.3);(2)2.3米【分析】(1)根据题意,直接写出坐标即可;(2)设抛物线的解析式为:,从而求出a的值,再把x=0代入解析式,即可求解【详解】(1)由题意得:点坐标为(4.5,3.05),的坐标为(3,3.3),故答案是:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为:,把点坐标(4.5,3.05),代入得,解得:,当x=0时,答:篮球出手时距地面的高度为2.3米【点睛】考查了二次函数的应用,利用二次函数的顶点式,求出函数解析式是解题的关键5、(1)yx23x4,;(2)【分析】(1)利用待定系数法将B(1,0),C(0,4)代入二次函数yx2bxc即可求出二次函数的解析式,令y0,可求出A点坐标,然后设直线AD的解析式为ykxb,利用待定系数法将A点坐标和D点坐标代入ykxb即可求出直线AD的解析式;(2)连接PD,作PGy轴交AD于点G,根据题意设出点P和点G的坐标,然后表示出线段PG的长度,进而根据表示出平行四边形APED的面积,最后根据二次函数的性质求解即可【详解】解:(1)将B(1,0),C(0,4)代入yx2bxc中,得,解得,二次函数的解析式为yx23x4在yx23x4中,令y0,即,解得x14,x21,A(4,0)设直线AD的解析式为ykxb'D(0,2),解得:直线AD的解析式为(2)连接PD,作PGy轴交AD于点G,如图所示设P(t,t23t4)(4t0),则G(t,),40,4t0,当时,S有最大值【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数中有关面积的综合题,解题的关键是熟练掌握待定系数法求函数表达式,根据题意设出点的坐标表示出平行四边形APED的面积

    注意事项

    本文(精品试题北师大版九年级数学下册第二章二次函数单元测试练习题(无超纲).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开