难点解析北师大版八年级数学下册第五章分式与分式方程定向训练试题(含详解).docx
-
资源ID:30779943
资源大小:240.98KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析北师大版八年级数学下册第五章分式与分式方程定向训练试题(含详解).docx
北师大版八年级数学下册第五章分式与分式方程定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、分式中a和b都扩大10倍,那么分式值()A不变B扩大10倍C缩小10倍D缩小100倍2、下列各式中,是分式的是( )ABCD3、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD4、2021年9月15日消息,钟南山等团队首次精确描绘德尔塔病毒传播链,该研究揭示了德尔塔变异毒株具有潜伏期短、传播速度快、病毒载量高、核酸转阴时间长、更易发展为危重症等特点德尔塔病毒的直径约为0.00000008m,数字0.00000008用科学记数法表示为( )ABCD5、若代数式运算结果为x,则在“”处的运算符号应该是( )A除号“÷”B除号“÷”或减号“-”C减号“-”D乘号“×”或减号“-”6、若分式有意义,则的取值范围是( )Aa2Ba0Ca2Da27、化简的结果是( )ABCD8、已知关于x的分式方程3的解是x3,则m的值为()A3B3C1D19、如果分式的值等于0,那么x的值是()ABCD10、下列代数式中:,共有分式( )A2个B3个C4个D5个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用科学记数法表示:_(精确到万分位)2、某种新冠肺炎病毒的直径在0.00 000 012米左右,很容易传染新冠肺炎病毒一旦进入人体后会导致人体的肺脏功能产生异常,如出现发烧、流鼻涕以及打喷嚏等症状;如果情况严重,还会影响到患者的呼吸,所以预防传染很重要,数字0.00 000 012用科学记数法可表示为_3、分式方程的解是 _4、当_时,分式的值为05、当时,分式的值为_三、解答题(5小题,每小题10分,共计50分)1、已知分式,当时,分式的值为0;当时,分式没有意义,求的值2、已知,求代数式的值3、计算:(1)(2)4、解方程:5、(1);(2)计算:;(3)先化简,再请你用喜爱的数代入求值-参考答案-一、单选题1、C【分析】根据题意分别用10a和10b去代换原分式中的a和b,进而利用分式的基本性质化简即可【详解】解:分别用10a和10b去代换原分式中的a和b,得,故分式的值缩小10倍故选:C【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论2、A【详解】解:A、是分式,故本选项符合题意;B、是整式,不是分式,故本选项不符合题意;C、是整式,不是分式,故本选项不符合题意;D、是整式,不是分式,故本选项不符合题意;故选:A【点睛】本题主要考查了分式的定义,熟练掌握形如 (其中 为整式,且分母 中含有字母)的式子叫做分式是解题的关键3、D【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【点睛】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键4、A【分析】根据用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,求解即可得出答案【详解】解:0.00000008=8×10-8故选:A【点睛】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键5、B【分析】分别计算出+、-、×、÷时的结果,从而得出答案【详解】解:,故选B【点睛】本题主要考查分式的运算,解题的关键是熟练掌握分式的运算法则6、A【分析】根据分式的分母不能为0即可得【详解】解:由题意得:,解得,故选:A【点睛】本题考查了分式有意义的条件,掌握理解分式的分母不能为0是解题关键7、D【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【点睛】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母8、B【分析】将x3代入分式方程中进行求解即可【详解】解:把x3代入关于x的分式方程3得:,解得:m3,故选:B【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解9、B【分析】根据分式的值为0的条件可得,即可求得答案【详解】解:分式的值等于0,故选B【点睛】本题考查了分式的值为0的条件,解题的关键是理解分式的值为0的条件是分子为0,分母不为010、B【分析】根据分式的定义,分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出正确答案【详解】解:在,中,是分式的有,共3个;故选:B【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数熟练掌握运用这个区别是解题关键二、填空题1、【分析】先按精确到千万位进行四舍五入取近似数,再按科学记数法的表示形式为a×10n的形式,一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一位,从左边第一个不是0的数字起到精确的数位止的所有数止【详解】解:(精确到万分位)=1.7×10-3故答案为1.7×10-3【点睛】本题考查按精确度取数,科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解【详解】解:0.00 000 012用科学记数法可表示为故答案为:【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为 ,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键3、x=-6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:2x=3x+6,解得:x=-6,检验:把x=-6代入得:x(x+2)0,x=-6是分式方程的解故答案为:x=-6【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验4、1【分析】由分式的值为0,可得,再解方程与不等式即可.【详解】解: 分式的值为0, 由得: 由得: 综上: 故答案为:【点睛】本题考查的是分式的值为0的条件,掌握“分式的值为0的条件:分子为0,分母不为0”是解题的关键.5、2025【分析】把分式化简为,然后把b的值代入计算即可【详解】解:,当时,原式2021+42025故答案为:2025【点睛】本题考查了分式的化简求值,熟练掌握利用平方差公式对分式进行化简是解题的关键三、解答题1、6【分析】根据分式的值为0,即分子等于0,分母不等于0,从而求得的值;根据分式没有意义,即分母等于0,求得的值,从而求得的值【详解】解:时,分式的值为0,时,分式没有意义,【点睛】本题考查了分式,解题的关键是注意:分式的值为0,则分子等于0,分母不等于0;分式无意义,则分母等于02、,【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值【详解】解:,当时,【点睛】本题考查了分式的化简求值,二次根式的化简,解题的关键是熟练掌握运算法则3、(1);(2)【分析】(1)根据二次根式的运算法则即可求解;(2)根据分式的运算法则即可求解【详解】解:(1)原式(2)原式【点睛】此题主要考查二次根式与分式的运算,解题的关键是熟知其运算法则4、【分析】去分母化为整式方程,然后求解方程并检验即可【详解】解:分式两边同乘得:,整理化简得:,解得:,检验,当,是原分式方程的解【点睛】本题主要是考查了解分式方程,正确地去分母,把分式方程化成整式方程,是求解的关键5、(1);(2);(3),当x1时,原式3【分析】(1)分别运用完全平方公式和多项式乘多项式法则展开后,合并即可;(2)先通分,再计算加减即可;(3)先计算括号内的减法(通分后按同分母的分式相加减法则计算)同时把除法变成乘法,再根据分式的乘法法则约分,最后代入求出即可【详解】解:(1)=;(2)=;(3)=,要使式子有意义,x22x0,x24x40,x34x0,x20,x不能是0、2、2,当x1时,原式3【点睛】本题考查了整式的乘法、分式的混合运算及化简求值等知识点,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算