难点详解沪教版七年级数学第二学期第十四章三角形定向测评试卷(无超纲带解析).docx
-
资源ID:30781446
资源大小:1.04MB
全文页数:36页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解沪教版七年级数学第二学期第十四章三角形定向测评试卷(无超纲带解析).docx
沪教版七年级数学第二学期第十四章三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( )A65°B65°或80°C50°或80°D50°或65°2、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D123、小明把一副含有45°,30°角的直角三角板如图摆放其中CF90°,A45°,D30°,则a+等于( )A180°B210°C360°D270°4、以下长度的三条线段,能组成三角形的是( )A2,3,5B4,4,8C3,4.8,7D3,5,95、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个6、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )ASSSBSASCASADAAS7、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,138、如图, ABCCDA,BAC=80°,ABC=65°,则CAD的度数为( )A35°B65°C55°D40°9、如图,AC,BD相交于点O添加一个条件,不一定能使的是( )ABCD10、如图,ABCDEF,点B、E、C、F在同一直线上,若BC7,EC4,则CF的长是( )A2B3C4D7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,_2、在平面直角坐标系中,ABC的顶点A、B、C的坐标分别为(0,3)、(4,0)、(0,0),AB=5,点P为x轴上一点,若使得ABP为等腰三角形,那么点P的坐标除点(,0)外,还可以是_3、如图,在等边三角形中,是边的高线,延长至点,使,则BE的长为_4、如图,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,若,则的度数为_5、如图,在AB1C1中,AC1B1C1,C120°,在B1C1上取一点C2,延长AB1到点B2,使得B1B2B1C2,在B2C2上取一点C3,延长AB2到点B3,使得B2B3B2C3,在B3C3上取一点C4,延长AB3到点B4,使得B3B4B3C4,按此操作进行下去,那么第2个三角形的内角AB2C2_°;第n个三角形的内角ABnCn_°三、解答题(10小题,每小题5分,共计50分)1、如图,在中,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F(1)求证:;(2)若,则_度2、如图,ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动(1)在运动过程中DEF是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE=4,DEC=150°,求等边ABC的周长;3、已知:如图,点D为BC的中点,求证:是等腰三角形4、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,AEGAGE,CDGC(1)求证:AB/CD;(2)若AGE+AHF=180°,求证:B=C;(3)在(2)的条件下,若BFC=4C,求D的度数5、如图,将一副直角三角板的直角顶点C叠放在一起(1)如图(1),若DCE33°,则BCD ,ACB (2)如图(1),猜想ACB与DCE的大小有何特殊关系?并说明理由(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则DAB与CAE的数量关系为 6、在四边形ABCD中,点E在直线AB上,且(1)如图1,若,求AB的长;(2)如图2,若DE交BC于点F,求证:7、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120°时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明8、如图,在中,点D是内一点,连接CD,过点C作且,连接AD,BE求证:9、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求DF的长10、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90°,则BCE= 度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论-参考答案-一、单选题1、D【分析】可以是底角,也可以是顶角,分情况讨论即可【详解】当角为底角时,底角就是,当角为等腰三角形的顶角时,底角为,因此这个等腰三角形的底角为或故选:D【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键2、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型3、B【分析】已知,得到,根据外角性质,得到,再将两式相加,等量代换,即可得解;【详解】解:如图所示,;故选D【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键4、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.87,能组成三角形,符合题意;D、3+59,不能组成三角形,不符合题意故选:C【点睛】本题主要考查对三角形三边关系的理解应用注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可5、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=×180°=90°,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=×180°=90°由翻折的性质可知:MBE=B=90°由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90°,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键6、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得【详解】解:三根木条即为三角形的三边长,即为利用确定三角形,故选:A【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键7、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12,B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键8、A【分析】先根据三角形内角和定理求出ACB=35°,再根据全等三角形性质即可求出CAD=35°【详解】解:BAC=80°,ABC=65°,ACB=180°-BAC-ABC=35°,ABCCDA,CAD=ACB=35°故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键9、C【分析】直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案【详解】解:当添加条件是时,在和中,则选项不符题意;当添加条件是时,在和中,则选项不符题意;当添加条件是时,在和中,则选项不符题意;当添加条件是时,不一定能使,则选项符合题意;故选:C【点睛】本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键10、B【分析】根据全等三角形的性质可得,根据即可求得答案【详解】解:ABCDEF,点B、E、C、F在同一直线上,BC7,EC4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键二、填空题1、180度【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.2、(,0)、(,0)、(9,0)【分析】先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况当PB=AB时当PA=PB时,当PA=AB时,讨论计算即可【详解】设P(a,0),A(0,3),B(4,0),PB=|a-4|,PA2=a2+9,AB=5,ABP是等腰三角形,当PB=AB时,|a-4|=5,a=-1或9,P(-1,0)或(9,0),当PA=PB时,(a-4)2=a2+9,a=,P(,0),当PA=AB时,a2+9=25,a=4(舍)或a=-4,P(-4,0)即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0)【点睛】本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键3、3【分析】由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解【详解】解:三角形是等边三角形,BCAC2,又 是边的高线,DC, 1,故答案为:3.【点睛】本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键4、80°【分析】先根据,得出,可证ADBC,再证BAD=BCD,得出AEB=F,然后证ABC=2CBE=2F,得出ADC=2F,利用三角形内角和得出CED=180°-EDC-ECD=180°-2F-3F=180°-5F,根据平角得出AEB+CED=180°-BEC=180°-80°=100°,列方程F+180°-5F=100°求出F=20°即可【详解】解:,ABC+BCD=180°,ADBC,BAD+ADC=180°,BAF+F=180°,ADC+BCD=180°,BAD=BCD,BAF=BAD+DAF,BAF+AEB=180°,AEB=F,ADBC,CBE=AEB,BE平分,ABC=2CBE=2F,ADC=2F,在CED中,CED=180°-EDC-ECD=180°-2F-3F=180°-5F,AEB+CED=180°-BEC=180°-80°=100°,F+180°-5F=100°,解得F=20°,故答案为80°【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出ADC=2F5、40 【分析】先根据等腰三角形的性质求出C1B1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出B1B2C2,C3B3B2及C4B3B2的度数,找出规律即可得出ABnCn的度数【详解】解:AB1C1中,AC1B1C1,C120°,C1B1A ,B1B2B1C2,C1B1A是B1B2C2的外角,B1B2C2 ;同理可得,C3B3B220°,C4B3B210°,ABnCn故答案为:40,【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出B1B2C2,C3B3B2及C4B3B2的度数,找出规律是解答此题的关键三、解答题1、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到BACBBCF,由AD是角平分线,得到BDCD,证BDECDF即可;(2)根据全等三角形的性质得到DEDFDA,根据求得DAB,进而求出B的度数即可【详解】(1)证明:,BACB,CB是的平分线,ACBBCF,BBCF,AD是角平分线,ABAC,BDCD,BDECDF,BDECDF(AAS);(2)BDECDF;EDFD,,EDAD,BACBBCF23°,故答案为:46【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算2、(1)DEF是等边三角形,理由见解析(2)等边ABC的周长为【分析】(1)利用DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明DEF是等边三角形(2)利用题(1)的条件即DEC=150°,得出是含角的直角三角形,求出,最后求解出等边ABC的长,最后即可求出等边ABC的周长【详解】(1)解:DEF是等边三角形,证明:由点D、E、F的运动情况可知:,ABC是等边三角形,,,,,在与中, ,同理可证,进而有,故DEF是等边三角形(2)解:由(1)可知DEF是等边三角形,且, 在中, ,等边ABC的周长为【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键3、证明见解析【分析】过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明【详解】如下图,过点D作,交AB于点M,过点D做,交AC于点N 直角和直角中 点D为BC的中点, 直角和直角中 , ,即是等腰三角形【点睛】本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解4、(1)见解析;(2)见解析;(3)108°【分析】(1)根据对顶角相等结合已知条件得出AEGC,根据内错角相等两直线平行即可证得结论;(2)由AGE+AHF=180°等量代换得DGC+AHF=180°可判断EC/BF,两直线平行同位角相等得出B=AEG,结合(1)得出结论;(3)由(2)证得EC/BF,得BFC+C=180°,求得C的度数,由三角形内角和定理求得D的度数【详解】证明:(1)AEG=AGE,C=DGC,AGE=DGCAEG=C AB/CD(2)AGE=DGC,AGE+AHF=180°DGC+AHF=180°EC/BF B=AEG由(1)得AEG=C B=C(3)由(2)得EC/BFBFC+C=180°BFC=4C C=36° DGC=36°C+DGC+D=180° D=108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键5、(1)57°,147°;(2)ACB180°DCE,理由见解析;(3)DAB+CAE120°【分析】(1)根据角的和差定义计算即可(2)利用角的和差定义计算即可(3)利用特殊三角板的性质,角的和差定义即可解决问题【详解】解:(1)由题意,;故答案为:57°,147° (2)ACB180°DCE, 理由如下: ACE90°DCE,BCD90°DCE, ACBACEDCEBCD90°DCEDCE90°DCE180°DCE (3)结论:DAB+CAE=120°理由如下:DAB+CAE=DAE+CAE+BAC+CAE=DAC+EAB,又DAC=EAB=60°,DAB+CAE=60°+60°=120°故答案为:DAB+CAE=120°【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型6、(1)5;(2)证明见解析【分析】(1)推出ADEBEC,根据AAS证AEDCEB,推出AEBC,BEAD,代入求出即可;(2)推出AEBC,AEDBCE,根据AAS证AEDBCE,推出ADBE,AEBC,即可得出结论【详解】(1)解:DECA90°,ADE+AED90°,AED+BEC90°,ADEBEC,A90°,B+A180°,BA90°,在AED和CEB中,AEDBCE(AAS),AEBC3,BEAD2,ABAE+BE2+35(2)证明:,AEBC,DFCAEC,DFCBCE+DEC,AECAED+DEC,AEDBCE,在AED和BCE中,AEDBCE(AAS),ADBE,AEBC,BCAEAB+BEAB+AD,即AB+ADBC【点睛】本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键7、(1),理由见解析;(2)60°;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60°,再由由旋转可知:从而得到,可证得,即可求解 ;(2)由BPC120°,可得PBCPCB60°根据等边三角形的性质,可得BAC60°,从而得到ABCACB120°,进而得到ABPACP60°再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60°,由旋转可知: 即在和ACP中 (2)BPC120°,PBCPCB60°在等边三角形ABC中,BAC60°,ABCACB120°,ABPACP60° ,ABPABP60°即 ;PM 理由如下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120°,PBCPCB60°PBCNBM60°即NBP60°ABCACB120°,ABPACP60°ABPABP60°即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键8、证明见解析【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证【详解】证明:,在和中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键9、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得EDCECDDEC60°,再根据直角定义和三角形的外角性质证得FFEC30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解(1)证明:ABC是等边三角形,ABACB60°DEAB,BEDC60°,ACED60°,EDCECDDEC60°,EFED,DEF90°,F30°F+FECECD60°,FFEC30°,CECF(2)解:由(1)可知EDCECDDEC60°,CEDC2又CECF,CF2DFDC+CF2+24【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键10、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45°,由“SAS”可证BADCAE,可得ABCACE45°,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180°或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键