欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    基础知识硅材料.doc

    • 资源ID:3088589       资源大小:109KB        全文页数:22页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基础知识硅材料.doc

    基础知识硅材料硅是重要的半导体材料,化学元素符号Si,电子工业上使用的硅应具有高纯度和优良的电学和机械等性能。硅是产量最大、应用最广的半导体材料,它的产量和用量标志着一个国家的电子工业水平。 在研究和生产中,硅材料与硅器件相互促进。在第二次世界大战中,开始用硅制作雷达的高频晶体检波器。所用的硅纯度很低又非单晶体。1950年制出第一只硅晶体管,提高了人们制备优质硅单晶的兴趣。1952年用直拉法(CZ)培育硅单晶成功。1953年又研究出无坩埚区域熔化法(FZ),既可进行物理提纯又能拉制单晶。1955年开始采用锌还原四氯化硅法生产纯硅,但不能满足制造晶体管的要求。1956年研究成功氢还原三氯氢硅法。对硅中微量杂质又经过一段时间的探索后,氢还原三氯氢硅法成为一种主要的方法。到1960年,用这种方法进行工业生产已具规模。硅整流器与硅闸流管的问世促使硅材料的生产一跃而居半导体材料的首位。60年代硅外延生长单晶技术和硅平面工艺的出现,不但使硅晶体管制造技术趋于成熟,而且促使集成电路迅速发展。80年代初全世界多晶硅产量已达2500吨。硅还是有前途的太阳电池材料之一。用多晶硅制造太阳电池的技术已经成熟;无定形非晶硅膜的研究进展迅速;非晶硅太阳电池开始进入市场。 化学成分 硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于0.4ppb和0.1ppb。拉制单晶时要掺入一定量的电活性杂质,以获得所要求的导电类型和电阻率。重金属铜、金、铁等和非金属碳都是极有害的杂质,它们的存在会使PN结性能变坏。硅中碳含量较高,低于1ppm者可认为是低碳单晶。碳含量超过3ppm时其有害作用已较显著。硅中氧含量甚高。氧的存在有益也有害。直拉硅单晶氧含量在540ppm范围内;区熔硅单晶氧含量可低于1ppm。 硅的性质 硅具有优良的半导体电学性质。禁带宽度适中,为1.21电子伏。载流子迁移率较高,电子迁移率为1350厘米/伏秒,空穴迁移率为480厘米/伏秒。本征电阻率在室温(300K)下高达2.310欧厘米,掺杂后电阻率可控制在1010 欧厘米的宽广范围内,能满足制造各种器件的需要。硅单晶的非平衡少数载流子寿命较长,在几十微秒至1毫秒之间。热导率较大。化学性质稳定,又易于形成稳定的热氧化膜。在平面型硅器件制造中可以用氧化膜实现PN结表面钝化和保护,还可以形成金属-氧化物-半导体结构,制造MOS场效应晶体管和集成电路。上述性质使PN结具有良好特性,使硅器件具有耐高压、反向漏电流小、效率高、使用寿命长、可靠性好、热传导好,并能在200高温下运行等优点。 硅单晶的主要技术参数 硅单晶主要技术参数有导电类型、电阻率与均匀度、非平衡载流子寿命、晶向与晶向偏离度、晶体缺陷等。 导电类型 导电类型由掺入的施主或受主杂质决定。P型单晶多掺硼,N型单晶多掺磷,外延片衬底用N型单晶掺锑或砷。 电阻率与均匀度 拉制单晶时掺入一定杂质以控制单晶的电阻率。由于杂质分布不匀,电阻率也不均匀。电阻率均匀性包括纵向电阻率均匀度、断面电阻率均匀度和微区电阻率均匀度。它直接影响器件参数的一致性和成品率。 非平衡载流子寿命 光照或电注入产生的附加电子和空穴瞬即复合而消失,它们平均存在的时间称为非平衡载流子的寿命。非平衡载流子寿命同器件放大倍数、反向电流和开关特性等均有关系。寿命值又间接地反映硅单晶的纯度,存在重金属杂质会使寿命值大大降低。 晶向与晶向偏离度 常用的单晶晶向多为 (111)和(100)(见图硅片导电类型和晶向标准 )。晶体的轴与晶体方向不吻合时,其偏离的角度称为晶向偏离度。 晶体缺陷 生产电子器件用的硅单晶除对位错密度有一定限制外,不允许有小角度晶界、位错排、星形结构等缺陷存在。位错密度低于 200/厘米者称为无位错单晶,无位错硅单晶占产量的大多数。在无位错硅单晶中还存在杂质原子、空位团、自间隙原子团、氧碳或其他杂质的沉淀物等微缺陷。微缺陷集合成圈状或螺旋状者称为旋涡缺陷。热加工过程中,硅单晶微缺陷间的相互作用及变化直接影响集成电路的成败。 类型和应用 硅单晶按拉制方法不同分为无坩埚区熔(FZ)单晶与有坩埚直拉(CZ)单晶。区熔单晶不受坩埚污染,纯度较高,适于生产电阻率高于20欧厘米的N型硅单晶(包括中子嬗变掺杂单晶)和高阻 P型硅单晶。由于含氧量低,区熔单晶机械强度较差。大量区熔单晶用于制造高压整流器、晶体闸流管、高压晶体管等器件。直接法易于获得大直径单晶,但纯度低于区熔单晶,适于生产20欧厘米以下的硅单晶。由于含氧量高,直拉单晶机械强度较好。大量直拉单晶用于制造MOS集成电路、大功率晶体管等器件。外延片衬底单晶也用直拉法生产。硅单晶商品多制成抛光片,但对FZ单晶片与CZ单晶片须加以区别。外延片是在硅单晶片衬底(或尖晶石、蓝宝石等绝缘衬底)上外延生长硅单晶薄层而制成,大量用于制造双极型集成电路、高频晶体管、小功率晶体管等器件。 展望 硅是地壳上最丰富的元素半导体, 性质优越而工艺技术比较成熟,已成为固态电子器件的主要原料。为适应超大规模集成电路的需要,高完整性高均匀度(尤其是氧的分布) 的硅单晶制备技术正在发展。虽然在超速集成电路方面砷化镓材料表现出巨大的优越性,但尚不可能全面取代硅的地位。硅材料在各种晶体三极管、尤其是功率器件制造方面仍是最主要的材料。无定形硅可能成为同单晶硅并列的重要硅材料。无定形硅和多晶硅太阳电池的成功将使硅材料的消耗量急剧增加。国内石英坩埚现状 国内石英坩埚厂家有:锦州圣戈班、荆州菲利华、扬州华尔、宁波宝斯达、余姚通达、杭州大和等,这是几家在市场比较流通的厂家,其他小厂就不说了。另外美国ge已经在无锡设厂开始生产。这里面厂家为真空坩埚的有:锦州圣戈班、荆州菲利华、扬州华尔,他们的工艺采用和美国GE相同的工艺,即真空熔融法。另外几家采用的是涂层法,即在坩埚内壁用精细石英砂喷涂到坩埚表面大约12mm左右,另外宁波宝斯达还有一种涂钡锅,即采用GE冷涂法,但其只是GE的皮毛,可应用到太阳能单晶用坩埚上。个人比较倾向于真空法,因为国内涂层用的漏斗是不能将石英砂精确的克的,故涂的不均匀,这就会造成在单晶生长过程中内壁脱落导致单晶生长失败。全世界所用的石英砂只有美国一家即尤尼明,但近两年挪威料开始进入市场,但国内只有1家在应用,而且06年昱辉用其坩埚造成了很大损失!石英坩埚在单晶生长中的重要性石英坩埚可说是最重要的hot zone元件之一,它不仅能影响长晶的良率,也会影响品质。最早期的石英坩埚是全部的透明的结构,这种透明的结构却容易引起导致不均匀的热传输条件,增加晶棒生长的困难度。现代的石英坩埚则存在二种结构,外侧是一层具有高气泡密度的区域,称为气泡复合层,内侧则是一层35mm的透明层,称之为气泡空乏层。气泡复合层的目的是在与均匀的辐射有加热器所提供的辐射热源。气泡空乏层的目的在于籍着降低与溶液接触区域的气泡密度,而改善单晶生长的成功率及晶棒品质。 石英坩埚本身是非晶质的介态能,在适当的条件下他会发生相变化而形成稳定的白矽石结晶态,这种过程一般称之为无光泽化devitrification,白矽石结晶态的形成包括成核与成长二个阶段,成核通常发生在石英坩埚壁上的结构缺陷或杂质(特别是一些碱性金属或重金属)。初期的白矽石结晶为球状,进一步的成长则是沿着坩埚壁成树枝状往侧向发展,这是因为石英坩埚与溶液的反应时的垂直方向的成长受到抑制之故。在白矽石结晶与非晶质石英坩埚壁之间通常夹杂着一层矽溶液,而在白矽石结晶的边缘,通常覆盖着棕色的sio气泡。这层渗透入石英坩埚壁的溶液,随着时间的增加,可能使得白矽石结晶整个剥落。这些剥落的白矽石颗粒,随着流动而飘动在溶液中。大部分的颗粒,在一定时间之后即可完全溶解于溶液内。然而仍有些几率,部分较大的颗粒在未完全溶解之前,即撞倒晶棒的表面,而导致位错的产生。在一个非常凹状的生长界面的边缘区域,对于这种有颗粒引起的位错现象,显得特别敏感。微小的颗粒如果碰到生长界面的中心区域,仍有可能不会产生位错。 生长中的晶棒受到白矽石颗粒碰撞,而产生位错的机率随着每单位时间由石英坩埚壁所释出的颗粒数目及大小之增加而增加。也就是说,产生位错的机率随着石英坩埚的使用时间及温度增加而增加。因此石英坩埚的使用总是有着时间的限制,超过一定的时间,过多的白矽石颗粒将从石英坩埚壁释放出来,使得零位错的生长而终止。这种石英坩埚使用寿命的限制,是生长更大尺寸晶棒及ccz(多次加料)晶棒生长的一大阻碍。 近来有人发现,只要在石英坩埚壁上涂一层可以促进devitrification的物质,既可大幅度的增加石英坩埚的使用寿命及长晶良率。这种可以促进devitrification的物质,一般用含有钡离子的化合物。这是因为钡在矽中的平衡偏析系数非常小,使得他在矽晶棒中的浓度小于2.5x109/cm3,因而不会影响到晶圆的品质。通常的做法是将石英坩埚壁涂上一层含有结晶水的氢氧化钡(Ba(OH)2.8H2O),这层氢氧化钡会与空气中的二氧化碳反应形成碳酸钡。而当这种石英坩埚在单晶炉上被加热时,碳酸钡会分解形成氧化钡,随着氧化钡与石英坩埚反应形成矽酸钡(BaSiO3)。由于矽酸钡的存在,使得石英坩埚壁上形成一层致密微小的白矽石结晶。这种微小的白矽石结晶很难被溶液渗入而剥落,即使剥落也很快被溶液溶解掉,因此可以大幅度的改善石英坩埚的使用寿命及长晶良率。另外在石英坩埚外壁形成一层白矽石结晶的好处,是它可以增加石英坩埚的强度,减少高温软化现象。-CZ生长原理及工艺流程CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。 1装料、熔料 装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一阶段。2籽晶与熔硅的熔接当硅料全部熔化后,调整加热功率以控制熔体的温度。一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。装料量越大,则所需时间越长。待熔体稳定后,降下籽晶至离液面35mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。 3引细颈 虽然籽晶都是采用无位错硅单晶制备的1619,但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。因此,在熔接之后应用引细颈工艺,即Dash技术,可以使位错消失,建立起无位错生长状态。 Dash的无位错生长技术的原理见72节。金刚石结构的硅单晶中位错的滑移面为111面。当以l00、lll和ll0晶向生长时,滑移面与生长轴的最小夹角分别为3616、l928和0。位错沿滑移面延伸和产生滑移,因此位错要延伸、滑移至晶体表面而消失,以100晶向生长最容易,以111晶向生长次之,以ll0晶向生长情形若只存在延伸效应则位错会贯穿整根晶体。细颈工艺通常采用高拉速将晶体直径缩小到大约3mm。在这种条件下,冷却过程中热应力很小,不会产生新的位错。因此,细颈的最小长度L与直径D的关系可由下式表示:式中,为滑移面与生长轴的最小夹角。高拉速可形成过饱和点缺陷。在这种条件下,即使ll0晶向生长位错也通过攀移传播到晶体表面。实践发现,重掺锑晶体细颈粗而短就可以消除位错,可能是通过攀移机制实现的。在籽晶能承受晶锭重量的前提下,细颈应尽可能细长,一般直径之比应达到1:10。 4放肩 引细颈阶段完成后必须将直径放大到目标直径,当细颈生长至足够长度,并且达到一定的提拉速率,即可降低拉速进行放肩。目前的拉晶工艺几乎都采用平放肩工艺,即肩部夹角接近180,这种方法降低了晶锭头部的原料损失。 5转肩 晶体生长从直径放大阶段转到等径生长阶段时,需要进行转肩,当放肩直径接近预定目标时,提高拉速,晶体逐渐进入等径生长。为保持液面位置不变,转肩时或转肩后应开始启动埚升,一般以适当的埚升并使之随晶升变化。放肩时,直径增大很快,几乎不出现弯月面光环,转肩过程中,弯月面光环渐渐出现,宽度增大,亮度变大,拉晶操作人员应能根据弯月面光环的宽度和亮度,准确地判断直径的变化,并及时调整拉速,保证转肩平滑,晶体直径均匀并达到目标值。从原理上说也可以采用升高熔体的温度来实现转肩,但升温会增强熔体中的热对流,降低熔体的稳定性,容易出现位错(断苞),所以,目前的工艺都采取提高拉速的快转肩工艺。6等径生长当晶体基本实现等径生长并达到目标直径时,就可实行直径的自动控制。在等径生长阶段,不仅要控制好晶体的直径,更为重要的是保持晶体的无位错生长。晶体内总是存在着热应力,实践表明,晶体在生长过程中等温面不可能保持绝对的平面,而只要等温面不是平面就存在着径向温度梯度,形成热应力,晶体中轴向温度分布往往具有指数函数的形式,因而也必然会产生热应力。当这些热应力超过了硅的临界应力时晶体中将产生位错。由轴向温度梯度引起的位错密度ND可以用下式表示41:式中,是硅的热胀系数(在500850温度范围内约为),b是柏格斯矢量的绝对值,G是切变模量,C是硅的临界应力,r 是晶体半径。从式(428)可知,轴向温度梯度不引起位错的条件是径向温度梯度引起的位错密度由下式表示式中l是晶体长度。从式(430)可知,径向温度梯度不引起位错的条件是因此,必须控制径向温度梯度和轴向温度梯度不能过大,使热应力不超过硅的临界应力,满足这样的条件才能保持无位错生长。另一方面,多晶中夹杂的难熔固体颗粒、炉尘(坩埚中的熔体中的SiO挥发后,在炉膛气氛中冷却,混结成的颗粒)、坩埚起皮后的脱落物等,当它们运动至生长界面处都会引起位错的产生(常常称为断苞),其原因一是作为非均匀成核的结晶核,一是成为位错源。调整热场的结构和坩埚在热场中的初始位置,可以改变晶体中的温度梯度。调节保护气体的流量、压力,调整气体的流向,可以带走挥发物SiO和有害杂质CO气体,防止炉尘掉落,有利于无位错单晶的生长,同时也有改变晶体中的温度梯度的作用。 无位错状态的判断因晶体的晶向而异,一般可通过晶锭外侧面上的生长条纹(通常称为苞丝)、小平面(通常称为扁棱和棱线)来判断。<111>生长时,在放肩阶段有六条棱线出现,三条主棱线、三条副棱线、等晶阶段晶锭上有苞丝和三个扁棱,因生长界面上小平面的出现而使弯月面光环上有明显的直线段部分。生长晶向对准时,三个小平面应大小相等,相互间成l20夹角。但实际生长时往往由于生长方向的偏离,造成小平面有大有小,有的甚至消失。<100>方向生长时,有四条棱线,没有苞丝。无位错生长时,在整根晶体上四条棱线应连续,只要有一条棱线消失或出现不连续,说明出现了位错(断苞)。 出现位错后的处理视情况不同处理方法也不同,当晶锭长度不长时,应进行回熔,然后重新拉晶;当晶锭超过一定的长度,而坩埚中还有不少熔料时,可将晶锭提起,冷却后取出,然后再拉出下一根晶锭;当坩埚中的熔体所剩不多时,或者将晶体提起,或者继续拉下去,断苞部分作为回炉料。拉晶人员应调整拉晶工艺参数,尽可能避免出现位错。 这里所提到的“苞丝”实质上是旋转性表面条纹。在425节中我们已经讨论了在晶体转轴与温度场对称轴不一致的条件下,晶体旋转所产生的轴向(沿提拉方向)的生长速率起伏以及由此而产生的旋转性杂质条纹。现在我们再来讨论在同样的条件下,晶体的径向(垂直于提拉方向)生长速率起伏所产生的结果。 在近似地认为固液界面上任意一点包括固液界面边缘上任意一点的温度都等于硅的凝固点温度的前提(也就是说认为界面的过冷度等于零,即不考虑生长动力学效应的影响)下,由图412可以看出,晶体旋转时晶体柱面与熔体液面的交点(即固液界面边缘上的一点)A点距轴O一O的距离是变化着的。晶体旋转一周,半径的变化为2d,故晶体的半径随时间的变化可表示为于是径向生长速率起伏为如果径向温度梯度为G、晶体旋转一周的温度变化为T,则代入(410)式,于是有在晶体生长的等径阶段,径向生长速率的平均值为零。由于晶体转轴与温度场对称轴不一致,因而产生了径向生长速率的起伏。径向生长速率的起伏导致在该条件下生长的晶体的表面出现了细牙螺纹。螺纹的螺距为每旋转一周固液界面边缘在液面方向的位移,如式(48)所示。螺纹的深度为2d,即O一O轴与O一O轴间垂直距离的两倍,见图410。晶体表面的这种细牙螺纹就是旋转性表面条纹。 晶体转轴与温度场对称轴不一致,晶体旋转时引起了生长速率的起伏,因而在晶体内引起了溶质浓度的起伏,这就是旋转性杂质条纹;同样原因引起的生长速率起伏,在晶体表面所引起的直径变化是旋转性表面条纹。故旋转性杂质条纹和旋转性表面条纹都是同一原因引起的。 除了上述的旋转性生长条纹以外,由于固液界面温度的随机性的起伏,引起生长速率的起伏,也会产生表面条纹。实际硅单晶无位错生长时所观察到的“苞丝”包括了这两种表面条纹。 以上关于表面生长条纹产生机制的讨论是在固液界面温度等于凝固点的近似假设条件下进行的,考虑到生长动力学效应界面温度有一定的过冷度,且与生长机制有关,因此<111>晶向生长的无位错硅单晶的生长过程中单晶表面可以看到明显的表面条纹(常被称为“苞丝”),而一旦出现位错后就会消失,在<111>以外的晶向生长的无位错硅单晶生长时也看不到这样的现象。 7收尾 收尾的作用是防止位错反延。在拉晶过程中,当无位错生长状态中断或拉晶完成而使晶体突然脱离液面时,已经生长的无位错晶体受到热冲击,其热应力往往超过硅的临界应力。这时会产生位错,并将反延至其温度尚处于范性形变最低温度的晶体中去(图420),形成位错排,星形结构。 一般来说,位错反延的距离大约等于生长界面的直径。因此,在拉晶结束时,应逐步缩小晶体的直径直至最后缩小成为一点,这一过程称为收尾。收尾可通过提高拉速,也可通过升高温度的方法来实现,更多的是将两种方法结合起来,收尾时应控制好收尾的速度,以防晶体过早地脱离液面。目前先进的单晶炉可以实现从引晶到收尾的整个过程太阳能级硅材料太阳能级硅材料什么是太阳能级硅材料太阳能级硅材料是纯度为6个9以上的高纯硅材料,即纯度为99.9999以上的硅材料。太阳能级硅如何制造在半导体工业上主要有Siemens和流化床FBR(FludizedBedRactor)来制备高纯多晶硅材料,Siemens采用高纯SiHCl3作为原料,而FBR是采用SiH4为原料。对于太阳能级多晶硅,在过去的80年代里,包括BayerAG,Siemens和Wacker等公司在内花费了相当大的努力开发太阳能级多晶硅,但是由于产量和纯度不能满足高效太阳电池的需要,与传统的电池生产技术相比并没有降低电池组件的成本,从而未能实现工业化。目前,有以下太阳能级多晶硅的制备工艺将会在未来的几年有所突破。WackerChemie公司采用高纯SiHCl3和流化床过程来制备粒状高纯多晶硅。2003试验的产量为200吨/年,到2006年可达到年产600吨,其目标是每公斤多晶硅价格低于25美元/公斤,这种太阳能级多晶硅只用来供给光伏产业,由于纯度的原因,不能够应用与半导体工业。Tokuyama也采用SiHCl3为原料,并采用高温、高速沉积过程将多晶硅沉积到衬底上,预计将在2006年计划生产;德国的SolarWorldandDegussa联合宣布采用SiH4热分解方法,在加热的硅圆柱体上得到太阳能级多晶硅;挪威的REC和美国的ASiMi将SiH4和Siemens方法制备高纯多晶硅的工艺改进,来制备太阳级多晶硅,产量预计2000吨/年;此外,日本的KawasakiSteel公司通过将冶金级硅提纯来制备太阳级硅,目前还处在试验工厂阶段,进行大规模生产的主要因素是多晶硅的纯度和材料的生产成本价格;美国的CrystalSystems采用热交换炉法提纯冶金级硅,将冶金级硅的难以提纯的B、P杂质降到了一个理想的数值。美国可再生能源实验室和俄罗斯研究机构采用冶金级硅粉和乙醇反应,来制备SiH4,然后再将SiH4热分解制备高纯多晶硅,目前正处于研究阶段。硅锭如何拉制目前主要有以下几种方法:直拉法 即切克老斯基法(Czochralski: Cz), 直拉法是用的最多的一种晶体生长技术。直拉法基本原理和基本过程如下:1.引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体;2.缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中;放肩:将晶体控制到所需直径;3.等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;4.收尾:直径逐渐缩小,离开熔体;5.降温:降级温度,取出晶体,待后续加工6.最大生长速度:晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。 提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。7.熔体中的对流:相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。 实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。8.生长界面形状(固液界面):固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。9.连续生长技术:为了提高生产率,节约石英坩埚(在晶体生产成本中占相当比例),发展了连续直拉生长技术,主要是重新装料和连续加料两中技术:- 重新加料直拉生长技术:可节约大量时间(生长完毕后的降温、开炉、装炉等),一个坩埚可用多次。- 连续加料直拉生长技术:除了具有重新装料的优点外,还可保持整个生长过程中熔体的体积恒定,提高基本稳定的生长条件,因而可得到电阻率纵向分布均匀的单晶。连续加料直拉生长技术有两种加料法:连续固体送料和连续液体送料法。10.液体覆盖直拉技术:是对直拉法的一个重大改进,用此法可以制备多种含有挥发性组元的化合物半导体单晶。主要原理:用一种惰性液体(覆盖剂)覆盖被拉制材料的熔体,在晶体生长室内充入惰性气体,使其压力大于熔体的分解压力,以抑制熔体中挥发性组元的蒸发损失,这样就可按通常的直拉技术进行单晶生长。 悬浮区熔法:主要用于提纯和生长硅单晶;其基本原理是:依靠熔体的表面张力,使熔区悬浮于多晶硅棒与下方生长出的单晶之间,通过熔区向上移动而进行提纯和生长单晶。具有如下特点:1.不使用坩埚,单晶生长过程不会被坩埚材料污染2.由于杂质分凝和蒸发效应,可以生长出高电阻率硅单晶 多晶硅浇注法 用于制备多晶硅太阳电池所用的硅原片,它是一种定向凝固法,晶体呈现片状生长过程和结构多晶硅材料小知识A、太阳能级多晶硅料 技术要求:总体要求:硅含量99.9999% 含硼量:<0.20ppba 含磷量:<0.90ppba 含碳量:<1.00ppba 金属含量:<30.00ppba 金属表面含量:<30.00ppba 尺寸大小要求:25mm-250mm 多晶种类:P型 电阻率:>0.50Ohmcm B、破碎半导体级硅片技术要求:半导体级碎硅片 片子形状为圆弧形碎片 硅片厚度>=400um 型号为P型 电阻率:>0.50Ohmcm C、小多晶硅技术要求1. 型号为N型,电阻率大于50ohmcn,碳含量小于5*1016/cm3,氟含量小于 5*1017/cm32. 块状为4mm3. 不能有氧化物夹层和不熔物,最好为免洗料 D、直拉多晶硅技术要求1.磷检为N型,电阻率大于100ohmcm, 硼检为P型,电阻率大于1000ohmcm.少娄载流子寿命大100um,碳含量小于1016cm3,氧含量小于1017 cm32. 块状小于30mm3. 不能有氧化物夹层和不熔物,最好为免洗料E、区熔头尾料技术要求1. N型,电阻率大于50chmom 少数载流子寿命大于100m2. 块状大于 30mm3. 区熔头尾料不能有气泡,不能有与线圈接触所造成的沾污,更不能有区熔过程的流硅或不熔物。4. 最好为免洗料F、直拉头尾料(IC料),最好为免洗料1. N型,电阻率大于10ohmom2. P型,电阻率大于 0.5ohmom3. 块状大于30mm,片厚大于0.5mm4. 直拉头尾料不能气泡,更不能有不熔物A、Solar energy gear polysilionDescription1. Base description :silicon deped is 99.9999%2. Boron doped :<0.20ppba3. P.phospherus doped:0.90ppba4. Carbon doped:1.00ppba5. Metal doped:<30.00ppba6. Metal surfce doped:<30.00ppba7. Length :25-250mm8. Type:p-type9. Resistivity:>0.50ohmcmB、Break semiconducter silicom waferDescription1. Base description :break senivonductor silicon wafer2. Shape:arc3. Thickness:>=400um4. Type:P-type5. Resisfivity:>0.50ohmcnC、Minor PolysiliconDescription1. Type:n-type2. Resisfivity:50 ohmcn3. Carbon iloped:<5*1016/m34. Fluorin doped:<5*1017/m35. Shape:block6. Length:>4mm7. Washing-free is the better with no oxide and infusible substanceF、IC materid1. Washing-free is the better2. N-type resitivity>10ohcm3. P-type resitivity>0.5ohcm4. Shape:block5. Length:>30mm6. Thickness:>0.5mm7. With no infusible subsface and air bubbk太阳能基本知识关键词:太阳能 基本能源 太阳能资源 太阳能是最重要的基本能源,生物质能、风能、潮汐能、水能等都来自太阳能,太阳内部进行着由氢聚变成氦的原子核反应,不停地释放出巨大的能量,不断地向宇宙空间辐射能量,这就是太阳能。太阳内部的这种核聚变反应可以维持很长时间,据估计约有几十亿至几百亿年,相对于人类的有限生存时间而言,太阳能可以说是取之不尽,用之不竭的。 太阳能的总量很大,我国陆地表面每年接受的太阳能就相当于1700亿吨标准煤,但十分分散,能流密度较低,到达地面的太阳能每平方米只有1000瓦左右。同时,地面上太阳能还受季节、昼夜、气候等影响,时阴时晴,时强时弱,具有不稳定性。根据太阳能的特点,必须解决以下四个基本技术问题,才能有效地加以利用。 1、太阳能采集 2、太阳能转换 3、太阳能贮存 4、太阳能输运 太阳能开发利用是当今国际上一大热点,经过最近20多年的努力,太阳能技术有了长足进步,太阳能利用领域已由生活热水,建筑采暖等扩展到工农业生产许多部门,人们已经强烈意识到,一个广泛利用太阳能和可再生能源的新时代太阳能时代即将来到。 太阳能利用的基本知识 (1)、太阳的基本结构 太阳能是一个炽热气体构成的球体,主要由氢和氦组成,其中氢占80%,氦占19%。 (2)、太阳常数 太阳常数是指在太阳地球间平均距离外,在地球大气层以上垂直于太阳光线的平面上,单位面积,单位时间内的太阳辐射能的数值,该数值是个常数,一般取1367瓦/米2。(4920千焦/米2时)。 由于通过地球外大气层吸收反射,太阳光到达地面的辐射强度大大降低。 (3)、太阳辐射能和到达地球的太阳能 整个太阳每秒钟释放出来的能量是无比巨大的,高达3.8261033尔格或37.3106兆焦,相当于每秒钟燃烧1.28亿吨标准煤所放出的能量。 太阳辐射到达地球陆地表面的能量,大约为17万亿千瓦,仅占到达地球大气外层表面总辐射量的10%。即使这样,它也相当目前全世界一年内能源总消耗量的3.5万倍。 (4)、我国的太阳能资源 我国太阳能资源十分丰富,全国有2/3以上的地区,年辐照总量大于502万千焦/米2,年日照时数在2000小时以上。 (5)、太阳能的特点 太阳能的优点 太阳能作为一种新能源,它与常规能源相比有三大优点: 第一,它是人类可以利用的最丰富的能源,据估计,在过去漫长的11亿年中,太阳消耗了它本身能量的2%,可以说是取之不尽,用之不竭。 第二,地球上,无论何处都有太阳能,可以就地开发利用,不存在运输问题,尤其对交通不发达的农村、海岛和边远地区更具有利用的价值。 第三,太阳能是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡。 太阳能的缺点 太阳能的利用有它的缺点: 第一,能流密度较低,日照较好的,地面上1平方米的面积所接受的能量只有1千瓦左右。往往需要相当大的采光集热面才能满足使用要求,从而使装置地面积大,用料多,成本增加。 第二,大气影响较大,给使用带来不少困难。 (6)、太阳能利用的技术领域 人类直接利用太阳能有三大技术领域,即光热转换、光电转换和光化学转换,此外,还有储能技术。 太阳光热转换技术的产品很多,如热水器、开水器、干燥器,采暖和制冷,温室与太阳房,太阳灶和高温炉,海水淡化装置、水泵、热力发电装置及太阳能医疗器具。 来源:人民网作者: 昵称:锅底料2007-06-23 15:26:29 Re:太阳能基本知识 太阳能光伏知识1、太阳能电池发电原理: 太阳电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成PN结。 当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的的实质是:光子能量转换成电能的过程。2、晶体硅太阳电池的制作过程: “硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末我们的生活中处处可见“硅”的身影和作用,晶体硅太阳电池是近15年来形成产业化最快。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。3、太阳电池的应用: 上世纪60年代,科学家们就己经将太阳电池应用于空间技术通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯、太阳能发电户用系统、村寨供电的独立系统、光伏水泵(饮水或灌溉)、通信电源、石油输油管道阴极保护、光缆通信泵站电源、海水淡化系统、城镇中路标、高速公路路标等。在世纪之交前后期间,欧美等先进国家光伏发电并入城市用电系统及边远地区自然界村落供电系统纳入发展方向。太阳电池与建筑系统的结合已经形成产业化趋势。4、太阳电池基本性质: a 、光电转换效率 % 评估太阳电池好坏的重要因素。 目前:实验室 24%,产业化: 15%。b、单体电池电压 V:0.4V0.6V由材料物理特性决定。c、填充因子FF%:评估太阳电池负载能力的重要因素。 FF=(ImVm)/(IscVoc) 其中:Isc短路电流,Voc开路电压,Im最佳工作电流,Vm最佳工作电压;d、标准光强与环境温度 地面:AM1.5光强,1000W/m2 ,t = 25;e、温度对电池性质的影响,例如:在标准状况下,AM1.5光强,t=

    注意事项

    本文(基础知识硅材料.doc)为本站会员(创****公)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开