欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学必修4知识点总结ppt课件.ppt

    • 资源ID:31375734       资源大小:1.73MB        全文页数:43页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学必修4知识点总结ppt课件.ppt

    必修4知识点总结 1. 1.角的概念的推广角的概念的推广(1)正角,负角和零角正角,负角和零角. .用旋转的观点定义角,并规定了旋转的正方向,就出现了正角,负角和零角,这样角的大小就不再限于00到3600的范围.(3)终边相同的角,具有共同的绐边和终边的角叫终边相同的角,所有与角终边相同的角(包含角在内)的集合为.Zkk,360(4)角在“到”范围内,指.3600(2)象限角.象限角的前提是角的顶点与直角坐标系中的坐标原点重合,始边与轴的非负半轴重合,这样当角的终边在第几象限,就说这个角是第几象限的角.(1)与与 角角终边相同的角的集合终边相同的角的集合:1.几类特殊角的表示方法几类特殊角的表示方法 | =2k + , kZ. (2)象限角、象限界角象限角、象限界角( (轴线角轴线角) )象限角象限角第一象限角第一象限角: (2k 2k + , k Z) 2 第二象限角第二象限角:(2k + 2k + , k Z) 2 第三象限角第三象限角: (2k + 2k + , k Z) 23 第四象限角第四象限角:2 (2k + 2k +2 , k Z 或或 2k - - 2k , k Z ) 23 一、角的基本概念一、角的基本概念四、什么是1弧度的角?长度等于半径长的弧所对的圆心角。OABrr2rOABr(3)角度与弧度的换算.只要记住,就可以方便地进行换算. 应熟记一些特殊角的度数和弧度数. 在书写时注意不要同时混用角度制和弧度制 rad1180180rad180130.571801rad(4)弧长公式和扇形面积公式. rlrnrnl1802360rlrrS212122222360360rnrnS度 弧度 003064543602120321354315065270231803602902、角度与弧度的互化角度与弧度的互化36021801801185730.57)180(1,弧度特殊角的角度数与弧度数的对应表特殊角的角度数与弧度数的对应表一、任意角的三角函数定义一、任意角的三角函数定义xyoP(x,y)r的终边sin,cos,tanyxyrrx二、同角三角函数的基本关系式二、同角三角函数的基本关系式商关系:sintancos平方关系:22sincos122yxrsincosxyo0 1 -1 0 +_1 0 0 -1 xyo+_不存在不存在 xyo0 0 不存在不存在 _+_+tan三角函数值的符号:三角函数值的符号:“第一象限全为正,二正三切四余弦第一象限全为正,二正三切四余弦”注意:(1)圆心在原点,半径为单位长的圆叫单位圆.在平面直角坐标系中引进正弦线、余弦线和正切线 为第二象限角时为第二象限角时 为第一象限角时为第一象限角时 为第三象限角时为第三象限角时 为第四象限角时为第四象限角时 sin)2sin( kcos)2cos( ktan)2tan( k-sinsin( )-coscos( )tantan( )sinsin( )-coscos( )tantan( )-sin2sin( )cos2cos( )tan2tan( )-sinsin( )coscos( )tantan( )(注意:把(注意:把 看作是锐角)看作是锐角)诱导公式总结:诱导公式总结:口诀:奇变偶不变,符号看象限口诀:奇变偶不变,符号看象限意义:意义:212kkZkk()的三角函数值)当 为偶数时,等于 的同名三角函数值,前面加上一个把 看作锐角时原三角函数值的符号;)当 为奇数时,等于 的异名三角函数值,前面加上一个把 看作锐角时原三角函数值的符号;你记住了吗?你记住了吗?度弧度0003004506009001200135015001800270036006432233456322sincostan212333212332123321233312222122220101001001010函数函数y=sinxy=cosx图形图形定义域定义域值域值域最值最值单调性单调性奇偶性奇偶性周期周期对称性对称性2522320 xy21- -1xRxR 1,1y 1,1y 22xk时,时,1maxy22xk 时,时,1miny 2xk时,时,1maxy2xk时,时,1miny -2,222xkk增函数增函数32,222xkk减函数减函数2,2xkk 增函数增函数2,2xkk 减函数减函数2522320 xy1- -122对称轴:对称轴:,2xkkZ对称中心:对称中心:(,0) kkZ对称轴:对称轴:,xkkZ对称中心:对称中心:(,0)2 kkZ奇函数奇函数偶函数偶函数y=sinxyx1-1/2/2 2 2 o3/23/2 /2/2 3/23/2 2 2 oyx y=cosx1-1对称点:对称点:(k ,0)对称轴:对称轴:x=k + 2对称轴:对称轴:x=k 对称点:对称点:(k + ,0) 2T/2k kZ Zk kZ ZT/23、正切函数的图象与性质、正切函数的图象与性质y=tanx图图象象22 xyo2323定义域定义域值域值域,2|NkkxxR奇偶性奇偶性 奇函数奇函数周期性周期性T单调性单调性)(2,2(Zkkk 正切函数的性质:正切函数的性质: 6、对称性:对称中心(,0)2kxOy11223222341y1y)sin( xAy振幅振幅初相(初相(x=0时的相位)时的相位)相位相位2:T 周期周期1:2fT 频率频率)sin(xAyxysin00|)sin(xy1101)sin(xy)sin(xAyxysin1011xysin00|)sin(xy)sin(xAy两角和与差的正弦、余弦、正切:():S():S():C():C():T():Tsin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsintantantan()1tantantantantan()1tantan二倍角公式:2:S2:C2:Tsin22sincos22cos2cossin22cos121 2sin 22tantan21tan2cos21cos22cos21sin2降幂公式:一个化同角同函数名的常用方法:如:sin3cos2sin()2cos()36sincos2sin()2cos()44cos,sin)sin(cossin222222baababxbaxbxa其中平平 面面 向向 量量 复复 习习向量的三种表示向量的三种表示表示表示运算运算向量加向量加法与减法法与减法向量的相关概念向量的相关概念实数与实数与向量向量 的积的积三三 角角 形形 法法 则则平行四边形法则平行四边形法则向量平行、向量平行、垂直的条件垂直的条件平面向量平面向量的基本定理的基本定理平平面面向向量量向量的数量积向量的数量积向量的应用向量的应用一、向量的定义一、向量的定义既有既有大小大小,又有,又有方向方向的量叫做的量叫做向量向量。二二 、向量的表示方法向量的表示方法有向线段有向线段 ( 起点、起点、 )1 几何表示法:几何表示法: a ,b2 字母表示法:字母表示法:ABB(终点)A(起点) 方向方向、长度长度单位向量单位向量-长度(模)等于长度(模)等于1个单位长度的向量叫作单位向量。个单位长度的向量叫作单位向量。2 2两个特殊向量:两个特殊向量: 问:在平面上把所有单位向量的起点平移到同一点问:在平面上把所有单位向量的起点平移到同一点P,那么它们,那么它们的终点的集合组成什么图形?的终点的集合组成什么图形?三、三、 向量的有关概念向量的有关概念零向量零向量-长度长度(模模)为为0的向量叫做零向量,记作的向量叫做零向量,记作 0。1.向量的向量的长度长度(模模):向量):向量AB的的大小大小也就是向量的也就是向量的长度(模)长度(模)。 | a |AB| 或或记作记作P3向量间的关系向量间的关系 平行向量又叫做共线向量平行向量又叫做共线向量如:如:abc()()平行向量:平行向量:方向方向相同相同或或相反相反的的非零向量非零向量叫做平行向量。叫做平行向量。记作 a b c规定:规定:0与任一向量平行。与任一向量平行。COC = cAOA = a OB = b B向量相等向量相等 向量向量平行平行平行向量一定是相等向量吗平行向量一定是相等向量吗?相等向量一定是平行向量吗相等向量一定是平行向量吗?(2)相等向量:相等向量:长度长度相等相等且且方向相同方向相同的向量叫做相等向量。的向量叫做相等向量。记作:记作:a = b规定:规定:0 = 0 abo.b aABCDDCBA 向量的加法:向量的加法:1 1 baBba+baA,.abOOAa ABbOBababab OA AB OB 已知向量 和在平面内任取一点作则向量叫做 和 的和 记作即=+=首尾顺次相连首尾顺次相连O两种特例两种特例( (两向量平行两向量平行) )ABC方向相同方向相反BCAabababACabACbaAa a a a a a a abbbBbaDaCba+b作法作法:(1)在平面内任取一点在平面内任取一点A; (2)以以点点A为起点为起点以向量以向量a、b为邻边作平行为邻边作平行 四边形四边形ABCD.即即ADBCa,AB=DC=b ; (3)则以)则以点点A为起点为起点的对角线的对角线ACa+b.2、向量加法的、向量加法的平行四边形法则平行四边形法则注意起点相同注意起点相同. .共线向量不适用共线向量不适用abba)()(cbacba想一想想一想1.若两向量互为相反向量若两向量互为相反向量,则它们的和为什么则它们的和为什么?0aaaa)()(aaa002.零向量和任一向量零向量和任一向量 的和为什么的和为什么?a说明:说明:、与、与 长度相等、方向相反的向量,长度相等、方向相反的向量, 叫做叫做 的相反向量的相反向量、零向量的相反向量仍是零向量、零向量的相反向量仍是零向量、任一向量和它相反向量的和是零向量、任一向量和它相反向量的和是零向量(),a b ab 定义:求两个向量差的运算叫向量的减法。 表示:bb向量减法向量减法:二、向量减法的三角形法则二、向量减法的三角形法则OABabba 1O在 平 面 内 任 取 一 点 2OAa,OBb 作 3ab则向量BA. 注意:注意: 1、两个向量相减,则表示两个向量起点的字母必须相同 2、差向量的终点指向被减向量的终点向量的减法向量的减法特殊情况特殊情况1.共线同向共线同向2.共线反向共线反向abBACababABCabab,、 向量的加、减、数乘运算统称为向量的线形运算。向量的加、减、数乘运算统称为向量的线形运算。对于任意的向量对于任意的向量 以及任意实数以及任意实数 恒有恒有12、,22aa 11(b)=b 平面向量的数量积平面向量的数量积 (1)a与与b的夹角的夹角: (2)向量夹角的范围)向量夹角的范围: (3)向量垂直)向量垂直:00 ,1800ab共同的起点共同的起点aOABbOABOABOABOAB(4)两个非零向量的数量积:)两个非零向量的数量积: 规定:规定:零向量与任一向量的数量积为0a b = |a| |b| cos几何意义:几何意义:数量积 a b 等于 a 的长度 |a|与 b 在 a 的方向上的投影 |b| cos的乘积。AabBB1OBAbB1aOBb(B1)AaO若若 a=( x1, y1 ), b=( x2, y2 )则则a b= x1 x2 + y1 y25、数量积的运算律:、数量积的运算律:交换律:交换律:abba对数乘的结合律:对数乘的结合律:)()()(bababa分配律:分配律:cbcacba )(注意:注意:数量积不满足结合律数量积不满足结合律)()( :cbacba即3.平面向量的数量积的性质平面向量的数量积的性质 (1)ab ab0(2)ab|a|b|(a与与b同向取正,反向取负同向取正,反向取负) (3)aa|a|2 或或 |a|aa(4) (5)|ab|a|b| babacos4.平面向量的数量积的坐标表示平面向量的数量积的坐标表示 (1)设设a(x1,y1),b(x2,y2),则则abx1x2+y1y2,|a|2x21+y21,|a|x21+y21,ab x1x2+y1y20 (2)(3)设设a起点起点(x1,y1),终点终点(x2,y2) 则则222221212121yxyxyyxxcos222121y-yx-xa5、重要定理和公式:、重要定理和公式:22)()(bababa2222)(bbaaba),(yxa 22|yxa设设则则),(11yxA),(22yxB212212)()(|yyxxAB设两点设两点则则),(11yxa ),(22yxb 222221212121cosyxyxyyxx设设则则ba02121yyxx),(11yxa ),(22yxb 设非零向量设非零向量则则0)2(0)1 (2121yyxxbabababa二、平面向量之间关系0)0),(),(/)2(;)0(/) 1 (12212211yxyxbyxbyxabababba向量平行向量平行(共线共线)条件的两种形式条件的两种形式:向量垂直条件的两种形式向量垂直条件的两种形式:(3)两个向量相等的条件是两个向量的)两个向量相等的条件是两个向量的坐标相等坐标相等. 即即: 那么那么 ),(11yxa),(22yxb 2121yyxxba且

    注意事项

    本文(数学必修4知识点总结ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开