欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《计算电磁学》第九讲ppt课件.ppt

    • 资源ID:31650281       资源大小:1.23MB        全文页数:29页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《计算电磁学》第九讲ppt课件.ppt

    计算电磁学Part II: 矩量法Dr. Ping DU (杜平)School of Electronic Science and Applied Physics, Hefei University of TechnologyE-mail: Chapter 2 Electrostatic Fields (静电场) Dec. 5 , 20112Outline2.1 Operator Formulation (算子描述) 2.2 Charged Conducting Plate (含电荷的导电平板) 32.1 Operator Formulation The static electric intensity E is conveniently found from an electrostaticpotential , which is E(2-1)where denotes the gradient operator. In a region of constant permittivity and volume charge density , the electrostatic potential satisfies2 (2-2) is the Laplacian operator (拉普拉斯算子). 24For unique solution, the boundary conditions on are needed. In other words, the domain of the operator must be specified.For now, consider fields from charges in unbounded space, in which case constant as rrr (2-3)where r is the distance from the coordinate origin(坐标原点), for every offinite extent.The differential operator formulation is L(2-4)where2L (2-5)5 The domain of L is those functions whose Laplacian exists and have bounded at infinity according to (2-3). The solution to this problem is ( , )( , , )4x y zx y zdx dy dzR(2-6)where is the distance between the source point 222()()()Rxxyyzz( ) and the field point ( ). , x y z, ,x y zHence, the inverse operator to L is 114Ldx dy dzR(2-7)Note that (2-7) is inverse to (2-5) only for boundary conditions (2-3). If the boundary conditions are changed, changes. 1L6A suitable inner product for electrostatic problems ( constant) isThat (2-8) satisfies the required postulates (1-2), (1-3) and (1-4) is easily verified. ,( , , ) ( , , )x y zx y z dxdydz (2-8)where the integration is over all space.Let us analyze the properties of the operator L.For this, form the left side of (1-5),2,()Ld (2-9)where ddxdydz7Greens identity is 22VSddsnn (2-10)where S is the surface bounding the volume V and n is outward direction normal to S. Let S be a sphere of radius r, so that in the limit the volume V includes all space. r For and satisfying boundary conditions (2-3), and 1/Cr2Cnras .r Hence as . Similarly for . 3Cnrr nSince increases only as , the right side of (2-10) vanishes as 2sindsrd d 2rr . Equation (2-10) then reduces to 22dd (2-11)8It is evident that the adjoint operator is aL2aLL (2-12)Since the domain of is that of L, the operator L is self-adjoint (自伴的). aLThe mathematical concept of self-adjointness in this case is related to the physical concept of reciprocity.It is evident from (2-5) and (2-7) that L and are real operators.1LThey are also positive definite because they satisfy (1-6). For L, form2*,*()Ld (2-13)and use the vector identity plus the divergence2() Theorem (散度定理).9The result is *,VSLdd s(2-14)where S bounds V. Again take S a sphere of radius r. For satisfying (2-3), the last term of (2-14) vanishes as . r Then2*,|Ld(2-15)and, for real and , L is positive definite. In this case, positive0definiteness of L is related to the concept of electrostatic energy (静电能).10 2.2 Charged Conducting Plate (含电荷的导电平板) Consider a square conducting 2a meter on a side and lying on the plane 0z with center at the origin as shown in Fig. 2-1. Fig. 2-1. Square conducting plate and subsections11Let represent the surface charge density on the plate. Here, we assume that the thickness is zero.( , )x yThe electrostatic potential at any point in space is ( ,)( , , )4aaaax yx y zdxdyR(2-16)where 222()()()RxxyyzzThe boundary condition is (constant) on the plate. VThe integral equation for the problem is 222( ,)4()()()aaaax yVdxdyxxyyzz(2-17)12where , . xayaThe unknown to be determined is the charge density . ( , )x yA parameter of interest is the capacitance of the plate 1( , )aaaaqCdxdyx yVV(2-18)which is a continuous linear functional of .Let us first go through a simple subsection and point-matching solution, and later interpret it in terms of more general concepts. Consider the plate divided into N square subsections, as shown in Fig. 2-1. Define basis functions nm1ons0on all othersnf(2-19)13Thus the charge density can be represented by1( , )Nnnnx yf(2-20)Substituting (2-20) in (2-17), and satisfying the resultant equation at the mid-point of each , we obtain the set of equations (,)mmxyms1NmnnnVl1,2,mN(2-21)where2214()()nnmnxymmldxdyxxyy(2-22)14Note that is the potential at the center of due to a uniform mnlmscharge density of unit amplitude over . nsA solution to the set (2-21) gives the in terms of which the charge density mis approximated by (2-20). The corresponding capacitance of the plate, approximating (2-18), is111NnnmnnnmnCslsV(2-23)To translate the above results into the language of linear spaces and the method of moments (MoM), let 15( , )( , )f x yx y( , )g x yVxaya222( ,)( )4()()()aaaaf x yL fdxdyxxyyzz(2-24),(2-25)(2-26)Then is equivalent to (2-17). ( )L fgA suitable inner product, satisfying (1-2) to (1-4), for which L is self-adjoint, is,( , ) ( , )aaaaf gdxdyf x y g x y(2-27)We choose the functions (2-19) as a subsectional basis. 16The testing functions are defined as() ()mmmwxxyy(2-28)This is the two-dimensional Dirac delta function. The elements of the l matrix (1-25) are those of (2-22), and the g matrix of(1-26) ismVVgV (2-29)The matrix equation equation (1-24) is identical to the set of equations (2-21). 17In terms of the inner product (2-27), the capacitance (2-18) can be written2,CV For numerical results, the of (2-22) must be evaluated. mnlLet denote the side length of each . 22 /baNnsThe potential at the center of due to unit charge density over its own surface isnsnn22122ln(12)0.88144bbbbbbldxdyxy(2-31)(2-30)18The potential at the center of due to unit charge density over unit charge over can be similarly evaluated, but the formula is complicated. msnsFor most purpose, it is sufficiently accurate to treat the charge on as if it were apoint charge, and usens2n224()()nmmnmnmnsblRxxyy(2-23)19Homework: Repeat this example. The side length is assume to be equal t o 1.Analyze the size of the subsectional domain V.S. the accuracy.20212223242526272829

    注意事项

    本文(《计算电磁学》第九讲ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开