七年级上册语文说课稿模板【高中高一上册数学说课稿模板五篇】.docx
七年级上册语文说课稿模板【高中高一上册数学说课稿模板五篇】 教案网权威发布高中高一上册数学说课稿模板五篇,更多高中高一上册数学说课稿模板五篇相关信息请访问教案网。教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。大范文网小编整理了高中高一上册数学说课稿模板五篇,希望对你有帮助! 集合的含义与表示 一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础, 一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合 论及其所反映的数学思想,在越来越广泛的领域种得到应用。 二.目标分析: 教学重点.难点 重点:集合的含义与表示方法.难点:表示法的恰当选择. 教学目标 l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; 2.过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3.情感.态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性. 三.教法分析 1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学. 四.过程分析 (一)创设情景,揭示课题 1教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。 (2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征? 引导学生互相交流.与此同时,教师对学生的活动给予评价. 2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征 由此引出这节要学的内容。 设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫 (二)研探新知,建构概念 1教师利用多媒体设备向学生投影出下面7个实例: (1)120以内的所有质数;(2)我国古代的四大发明; (3)所有的安理会常任理事国;(4)所有的正方形; (5)海南省在2021年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)国兴中学2021年9月入学的高一学生的全体. 2教师组织学生分组讨论:这7个实例的共同特征是什么? 3.每个小组选出位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示. 设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神 (三)质疑答辩,发展思维 1教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等. 2教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解. 3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价. 4.教师提出问题,让学生思考 b是(1)如果用A表示高(3)班全体学生组成的集合,用a表示高一(3)班的一位同学, 高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于. 如果a是集合A的元素,就说a属于集合A,记作a?A. 如果a不是集合A的元素,就说a不属于集合A,记作a?A. (2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示 (3)让学生完成教材第6页练习第1题. 5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题. 6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式? (2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么? (3)如何根据问题选择适当的集合表示法? 使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。 设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。 (四)巩固深化,反馈矫正 教师投影学习: (1)用自然语言描述集合1,3,5,7,9;(2)用例举法表示集合A?x?N|1?x?8 (3)试选择适当的方法表示下列集合:教材第6页练习第2题. 设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象 (五)归纳小结,布置作业 小结:在师生互动中,让学生了解或体会下例问题: 1本节课我们学习了哪些知识内容?2你认为学习集合有什么意义? 3选择集合的表示法时应注意些什么? 设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。 作业:1课后书面作业:第13页习题1.1A组第4题. 2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种 呢?如何表示?请同学们通过预习教材. 五.板书分析 函数及其表示说课稿 尊敬的各位专家、评委: 下午好! 我的抽签序号是,今天我说课的课题是人教A版必修1第一章第二节函数及其表示. 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。 一、教材分析 (一)地位与作用 函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段:第一阶段在义务教育阶段,学习了函数的描述性概念,接触了正比例函数,凡比例函数,一次函数,二次函数等;本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(iI)是函数学习的第二阶段,是对函数概念的再认识阶段;第三阶段在选修系列得导数及其应用的学习,使函数学习的进一步深化和提高。因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数的思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。 本小节介绍了函数概念,及表示方法.我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。这里我主要谈谈函数概念的教学。 函数的概念部分用三个实际例子设计数学情境,让学生探寻变量和变量的对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数的概念,体验结合旧知识,探索新知识,研究新问题的快乐。 (二)学情分析 (1)在初中,学生已经学习过函数的概念,并且知道函数是变量之间的相互依赖关系. (2)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。 (3)学生层次参次不齐,个体差异比较明显。 二、目标分析 根据函数的概念在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标: (一)教学目标 (1)知识与技能 1进一步体会函数是描述变量之间的依赖关系的重要数学模型,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用 2了解构成函数的要素,理解函数定义域和值域的概念,并会求一些简单函数的定义域。由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。 (2)过程与方法 引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构函数概念;体验结合旧知识探索新知识,研究新问题的快乐 (3)情感态度与价值观 通过对函数概念形成的探究过程培养学生发现问题,探索问题,不断超越的创新品质 (二)重点难点 重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念难点:函数概念及符号y=f(x)的理解 三、教法、学法分析 (一)教法 在本课的教学过程中采用设问、引导、启发、发现的方法,并灵活应用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境,组织学生自主、合作的探究活动,引导学生探索新知识。 (二)学法 首先,学生通过研究教师在课堂上提供的实例和提出的问题,展开分析和讨论,发表个人的见解,接下来采用学生评价学生的方法提炼问题的中心思想。其次,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。最后,学生在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。 四、教学过程分析 (一)教学过程设计 (1)创设情境,提出问题。 引入课本的三个具体实例,引发学生的探索 对于例1:可以分别让学生计算t=1,2,5,10时,炮弹距离地面多高,同时关注t和h的变化范围,引导学生体会有解析式刻画变量之间的对应关系,启发学生用集合与对应的语言描述函数关系: 对于例2:可以让学生观察图像,找出臭氧空洞面积最大的年份或者臭氧空洞面积大约为2021万平方千米所对应的年份,引导学生体会图像对刻画变量之间的对应关系,并关注t和s的范围。启发学生再次利用集合与对应的语言描述函数关系: 对于例3:恩格尔系数与时间之间的关系是否和前两个例题的两个变量之间的关系相似?如何用集合和对应的语言进行描述 (2)引导探究,建构概念。 (1)进一步提问:“你觉得这三个问题有没有共同的特点呢?”由于这个问题比较开放,所以学生,容易形成数学以外的或者不在本课研究范围的观点。首先采用小组合作探究的形式获得共识,并由各小组派代表发表探究成果,接着再让其它学生根据老师的叙述,评论、提炼出重点。作为教学的引导者,我需要及时对学生的解答进行指引。最终得出函数的概念 (2)教师概括总结学生的探究成果,形成函数概念,并进一步解释函数概念 I、函数的三要素 Ii函数富豪的内涵 为深化学生对函数概念的理解,还可以用函数概念解析已经学过的一次函数,二次函数,妇女比例函数等,可以设计如下表格 函数一次函数二次函数反比例函数 对应关系 定义域 值域 由学生填写 (3)自我尝试,初步应用。 例1、判断下列图像是否为函数图像。考察学生对函数定义的理解 例2、采用课本例1,并增加一问若f(x)=-1,求x 目的是引导学生探究求函数定义域的基本方法;对于用解析式表示的函数会用解析式求 函数值或有函数值求子变量的值,进一步体会函数级号的含义,区分f(-1),f(a),f(x)例3采用课本例2 目的:通过判断函数的相等认识到函数的整体性,并指出在三要素中,由于值域是由定义域和对应法则决定的,所以只要两个函数的定义域和对应关系相同,两个函数就相等;进一步加深函数概念的理解 (4)当堂训练,巩固深化。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。 采用课后练习1、2、3 (5)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能? (二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成 我设计了以下作业: (1)必做题:课后习题A1(2,3),2、5、6 (2)选做题:课后习题B1、2 (三)板书设计 板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析 学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢! 函数的奇偶性(说课稿) 尊敬的各位专家评委、老师们:上午好! 我是12号说课教师。今天我说课的题目是函数的奇偶性。我将从教材分析、目标确立、教法和学法的确定、教学程序设计、过程分析五个方面对本节课进行说明. 一教材分析: 本节课是高中数学人教B版必修一2.1.4的内容,是学生在学习了函数、轴对称和中心对称图形的基础上来学习的,函数的奇偶性是考察函数性质时的又一个重要方面。教材从具体到抽象,从感性到理性,循序渐进地引导学生进入数学领域进行观察、归纳,形成函数奇偶性概念。同时渗透数形结合,从特殊到一般的数学思想。 二、确立教学目标 (1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断简单函数的奇偶性。 (2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊到一般的数学思想方法. (3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。.教学重点:函数奇偶性概念的形成 教学难点:函数奇偶性的判断 三、说教法和学法 1、教法 根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法、类比法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。 2、学法让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。 四、教学程序设计: 为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序: (一)设疑导入,观图激趣。(二)指导观察,形成概念。(三)学生探索、发展思维。 (四)知识应用,巩固提高。(五)归纳小结,布置作业。 五、说课过程: (一)设疑导入、观图激趣。 1、用多媒体展示一组图片,让学生感受生活中的美:对称美,再让学生举例。 通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。 (二)指导观察、形成概念。数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。先思考一个问题:哪些函数的图象关于轴对称?试举例。 然后以函数f(x)=x2和f(x)=x为例,学生动手作出图像,让学生回想,初中时怎样判断图象关于 轴对称呢?此时提出研究方向:今天我们将从数值角度研究图象的这种 特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示.借助课件演示(令 得出等式比较 ,再令 ,得到 )让学生发现两个函数的对称性反应到函数值上具有的特性:,然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立.最后让学生用完整的语言给 出偶函数定义,不准确的地方教师予以提示或调整. (1)偶函数的定义:(板书) 设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-xD且 f(x)=f(x),那么f(x)就叫做偶函数 接着提出新问题: 函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?然后多媒体展示两个学生非常熟悉的函数f(x)?x和f(x)?1 x的图象让学生观察研究。 引导学生用类比的方法,得出结论,再鼓励学生给出奇函数的定义. (2)奇函数的定义(板书) 设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-xD且 f(x)=f(x),那么f(x)就叫做奇函数. (三)学生探索、深化概念: 设计以下问题组织学生讨论思考回答 问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别? 问题2:x与x在几何有何关系?具有奇偶性的函数的定义域有何特征? 问题3:如果一个函数是奇函数,且0在定义域内,f(0)??如果一个函数既是奇函数,又是偶函数,则f(x)有何特性? 通过对三个问题的探讨,引导学生认识以下几点:(多媒体显示) 问题4:结合函数f(x)?1 x的图像回答以下问题: (1)对于任意一个奇函数f(x),图像上的点P(x,f(x))关于原点的对称点P的坐标是什么?点P是否也在函数f(x)的图像上?由此可得到怎样的结论? (2)如果一个函数的图像是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性? 学生通过交流探索问题4可以把奇函数的性质总结出来,然后教师发动学生自己研究一下偶函数图像的性质(教师板书) (四)、知识应用,巩固提高。 例1.判断下列函数的奇偶性 (1)f(x)=x4(2)f(x)=x5 (3)f(x)=x+1/x(4)f(x)=1/x2 选例1的第(1)小题板书来示范解题步骤,其他例题让几个学生板演,其余学生在下面完成。 例1设计意图是归纳出判断奇偶性的步骤: (1)先求定义域,看是否关于原点对称; (2)再判断f(-x)=-f(x)还是f(-x)=f(x). 结合例1的答案,发动学生思考:一个函数奇偶性的可能情况有几种类型?(多媒体显示) 例1完成后,要求学生做练习,及时巩固,教师做好巡视指导 练习:教材第53页,练习A第1题 下面来学习例2、例3 例2已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象.(多媒体显示) 1例3研究函数y?2的性质并作出它的图像x 课件演示例2,板书例3. 例2例3主要让学生体会学习了函数的单调性后为研究函数的性质带来的方便。根据奇、偶函数图像的对称性,只研究函数在y轴一侧的图像和性质就可以知道在另一侧的图像和性质。 (五)归纳小结,布置作业。 从知识和方法两个方面让学生谈本节课的收获,并进行反思。 作业:层次一:教材第52页习题2-1A6、7、8题层次二:教材第53页习题2-1B2、3、4题层次三:补充题:判断按下列函数的奇偶性: 通过分层作业使学生进一步巩固本节课所学内容,并为学有余力和学习兴趣浓厚的学生提供进一步学习的机会 以上是对本节课的一些思考,不妥之处,敬请各位专家评委批评指正。 指数函数 一、教材分析 1.指数函数在教材中的地位、作用和特点 指数函数是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了指数一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为指数函数是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以指数函数不仅是本章函数的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。 此外,指数函数的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2.教学目标、重点和难点 通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 鉴于对学生已有的知识基础和认知能力的分析,根据教学大纲的要求,我确定本节课的教学目标、教学重点和难点如下: (1)知识目标:掌握指数函数的概念;掌握指数函数的图象和性质;能初步利用指数函数的概念解决实际问题; (2)技能目标:渗透数形结合的基本数学思想方法培养学生观察、联想、类比、猜测、归纳的能力; (3)情感目标:体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力领会数学科学的应用价值。 (4)教学重点:指数函数的图象和性质。 (5)教学难点:指数函数的图象性质与底数a的关系。 突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、教法设计 由于指数函数这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。 3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。 教师活动:引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;布置课后及拓展作业 学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。 设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。 5.板书设计 考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。 五、教学评价 教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。 当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正! 对数函数说课稿 说课的内容是对数函数,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。 一、说教材 1、教材的地位、作用及编写意图 对数函数出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。 2、教学目标的确定及依据。 依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标: (1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。 (2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。 (3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。 (4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。 3、教学重点、难点及关键 重点:对数函数的概念、图象和性质; 难点:利用指数函数的图象和性质得到对数函数的图象和性质; 关键:抓住对数函数是指数函数的反函数这一要领。 二、说教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: (1)启发引导学生思考、分析、实验、探索、归纳。 (2)采用“从特殊到一般”、“从具体到抽象”的方法。 (3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。 (4)多媒体演示法。 三、说学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)对照比较学习法:学习对数函数,处处与指数函数相对照。 (2)探究式学习法:学生通过分析、探索、得出对数函数的定义。 (3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。 (4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。 这样可发挥学生的主观能动性,有利于提高学生的各种能力。 四、说教学程序 1、复习导入 (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。 设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。 (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。 2、认定目标(出示教学目标) 3、导学达标 按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动. (1)对数函数的概念 引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a0且a1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a0且a1。从而引出对数函数的概念,展示课件。 设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。 因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象 提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢? 让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。 方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x0,因此可取x=,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象. 方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。 设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。 这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质 在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上 述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。 作了以上分析之后,再分a1与0a1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。 设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。 由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。 4、巩固达标(见课件) 这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。 5、反馈练习(见课件) 习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。 6、归纳总结(见课件) 引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。 7、课外作业:(1)完成P178A组1、2、3题 (2)当底数a1与0a1时,底数不同,对数函数图象有什么持点? 五、说板书 板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。 第 32 页 共 32 页