欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数数学教案.docx

    • 资源ID:32042319       资源大小:51.82KB        全文页数:68页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数数学教案.docx

    文本为Word版本,下载可任意编辑函数数学教案函数数学教案1 一、教学目的 1使学生进一步理解自变量的取值范围和函数值的意义 2使学生会用描点法画出简单函数的图象 二、教学重点、难点 重点: 1理解与认识函数图象的意义 2培养学生的看图、识图能力 难点: 在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题 三、教学过程 1画函数图象的方法是描点法其步骤: (1)列表要注意适当选取自变量与函数的对应值什么叫“适当”?这就要求能选取表现函数图象特征的几个关键点比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了 一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来 (2)描点我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点 (3)用光滑曲线连线根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线 一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线) 2讲解画函数图象的三个步骤和例画出函数y=x+0。5的图象 小结 本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图 练习:选用课本练习(前一节已作:列表、描点,本节要求连线) 补充题:画出函数y=5x2的图象 作业:选用课本习题 四、教学注意问题 1注意渗透数形结合思想通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征 2注意充分调动学生自己动手画图的积极性 3认识到由于计算器和计算机的普及化,代替了手工绘图功能故在教学中要倾向培养学生看图、识图的能力。 函数数学教案2 I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式一般式:y=ax2+bx+c(a,b,c为常数,a0) 顶点式:y=a(x-h)2+k抛物线的顶点P(h,k) 交点式:y=a(x-x?)(x-x?)仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线 注:在3种形式的互相转化中,有如下关系: h=-b/2ak=(4ac-b2)/4ax?,x?=(-bb2-4ac)/2a III.二次函数的图像在平面直角坐标系中作出二次函数y=x2的图像, 可以看出,二次函数的图像是一条抛物线。 函数数学教案3 目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点: 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 过程: 一、试一试 1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2试将计算结果填写在下表的空格 中, AB长x(m)123456789 BC长(m)12 面积y(m2)48 2x的值是否可以任意取?有限定范围吗? 3我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 x 10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(202x)(0 x 10)就是所求的函数关系式 二、提出问题 某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并 回答: 1商品的利润与售价、进价以及销售量之间有什么关系? 2如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元? 3若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? 4x的值是否可以任意取?如果不能任意取,请求出它的范围, 5若设该商品每天的利润为y元,求y与x的函数关系式。 将函数关系式y=x(202x)(0 x 10化为: y=2x220x (0x10)(1) 将函数关系式y=(108x)(100100x)(0x2)化为: y =100x2100x20D (0x2)(2) 三、观察;概括 1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式2x220和100x2100x200分别是几次多项式? (分别是二次多项式 ) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点 ? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2二次函数定义:形如y=ax2bxc (a、b、c是常数,a0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项 四、课堂练习 1.(口答)下列函数中,哪些是二次函数? (1)y= 5x1 (2)y=4x21 (3)y=2x33x2 (4)y=5x43x1 2P3练习第1,2题。 五、小结 1请叙述二次函数的定义 2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。 函数数学教案4 教学设计思路 由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。 教学目标 知识与技能 1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。 2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。 过程与方法 1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。 2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。 情感态度与价值观 1.认识到数学知识是有联系的,逐步感受数学内容的系统性; 2.通过分组讨论,培养合作交流意识和探索精神。 教学重点和难点 理解和领会反比例函数的概念。 教学难点 领悟反比例函数的概念。 教学方法 启发引导、分组讨论 课时安排 1课时 教学媒体 课件 教学过程设计 复习引入 1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系? 2.在上一学段,我们研究了现实生活中成反比例的两个量 函数数学教案5 一、内容与解析 (一)内容:对数函数的性质 (二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。 二、目标及解析 (一)教学目标: 1.掌握对数函数的性质并能简单应用 (二)解析: (1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。 三、问题诊断分析 在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板. 四、教学支持条件分析 在本节课()的教学中,准备使用(),因为使用(),有利于(). 五、教学过程 问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。 设计意图: 师生活动(小问题): 1.这些对数函数的解析式有什么共同特征? 2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。 3.通过这些函数图象请从函数值的分布角度总结相关性质 4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律? 问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。 问题3.根据问题1、2填写下表 图象特征函数性质 a10a1a10a1 向y轴正负方向无限延伸函数的值域为R+ 图象关于原点和y轴不对称非奇非偶函数 函数图象都在y轴右侧函数的定义域为R 函数图象都过定点(1,0) 自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数 在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1 在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1 设计意图发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成 例1.比较下列各组数中两个值的大小: (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7 (3)log a5.1 , log a5.9 ( a0 , 且a1 ) 变式训练:1. 比较下列各题中两个值的大小: log106 log108 log0.56 log0.54 log0.10.5 log0.10. 6 log1.50.6 log1.50.4 2已知下列不等式,比较正数m,n 的大小: (1) log 3 m log 0.3 n (3) log a m 1) 例2.(1)若 且 ,求 的取值范围 (2)已知 ,求 的取值范围; 六、目标检测 1.比较 , , 的大小: 2.求下列各式中的x的值 (1) 演绎推理导学案 2.1.2 演绎推理 学习目标 1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性; 2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理. 学习过程 一、前准备 复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理. 复习2:合情推理的结论 . 二、新导学 学习探究 探究任务一:演绎推理的概念 问题:观察下列例子有什么特点? (1)所有的金属都能够导电,铜是金属,所以 ; (2)一切奇数都不能被2整除,20xx是奇数,所以 ; (3)三角函数都是周期函数, 是三角函数,所以 ; (4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 . 新知:演绎推理是 的推理.简言之,演绎推理是由 到 的推理. 探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点? 所有的金属都导电 铜是金属 铜能导电 已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断 大前提 小前提 结论 新知:“三段论”是演绎推理的一般模式: 大前提 ; 小前提 ; 结论 . 新知:用集合知识说明“三段论”: 大前提: 小前提: 结 论: 试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式. 典型例题 例1 命题:等腰三角形的两底角相等 已知: 求证: 证明: 把上面推理写成三段论形式: 变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD 例2求证:当a>1时,有 动手试试:1证明函数 的值恒为正数。 2 下面的推理形式正确吗?推理的结论正确吗?为什么? 所有边长相等的凸多边形是正多边形,(大前提) 菱形是所有边长都相等的凸多边形, (小前提) 菱形是正多边形. (结 论) 小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确. 三、总结提升 学习小结 1. 合情推理 ;结论不一定正确. 2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确. 3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略. 当堂检测(时量:5分钟 满分:10分)计分: 1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 平面 ,则直线 直线 ”的结论显然是错误的,这是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4.归纳推理是由 到 的推理; 类比推理是由 到 的推理; 演绎推理是由 到 的推理. 后作业 1. 运用完全归纳推理证明:函数 的值恒为正数。 直观图 总 课 题空间几何体总课时第4课时 分 课 题直观图画法分课时第4课时 目标掌握斜二侧画法的画图规则会用斜二侧画法画出立体图形的直观图 重点难点用斜二侧画法画图 引入新课 1平行投影、中心投影、斜投影、正投影的有关概念 2空间图形的直观图的画法斜二侧画法: 规则:(1)_ (2)_ (3)_ (4)_ 例题剖析 例1 画水平放置的正三角形的直观图 例2 画棱长为 的正方体的直观图 巩固练习 1在下列图形中,采用中心投影(透视)画法的是_ 2用斜二测画法画出下列水平放置的图形的直观图 3根据下面的三视图,画出相应的空间图形的直观图 课堂小结 通过例题弄清空间图形的直观图的斜二侧画法方法及步骤. 函数数学教案6 学习目标: (1)理解函数的概念 (2)会用集合与对应语言来刻画函数, (3)了解构成函数的要素。 重点: 函数概念的理解 难点: 函数符号y=f(x)的理解 知识梳理: 自学课本P29P31,填充以下空格。 1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。 2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ; 。 5、设a, b是两个实数,且a (1)满足不等式 的实数x的集合叫做闭区间,记作 。 (2)满足不等式a (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ; 分别满足xa,x>a,xa,x 其中实数a, b表示区间的两端点。 完成课本P33,练习A 1、2;练习B 1、2、3。 例题解析 题型一:函数的概念 例1:下图中可表示函数y=f(x)的图像的只可能是( ) 练习:设M=x| ,N=y| ,给出下列四个图像,其中能表示从集合M到集合N的函数关系的有_个。 题型二:相同函数的判断问题 例2:已知下列四组函数: 与y=1 与y=x 与 与 其中表示同一函数的是( ) A. B. C. D. 练习:已知下列四组函数,表示同一函数的是( ) A. 和 B. 和 C. 和 D. 和 题型三:函数的定义域和值域问题 例3:求函数f(x)= 的定义域 练习:课本P33练习A组 4. 例4:求函数 , ,在0,1,2处的函数值和值域。 当堂检测 1、下列各组函数中,表示同一个函数的是( A ) A、 B、 C、 D、 2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C ) A、5 B、-5 C、6 D、-6 3、给出下列四个命题: 函数就是两个数集之间的对应关系; 若函数的定义域只含有一个元素,则值域也只含有一个元素; 因为 的函数值不随 的变化而变化,所以 不是函数; 定义域和对应关系确定后,函数的值域也就确定了. 其中正确的有( B ) A. 1 个 B. 2 个 C. 3个 D. 4 个 4、下列函数完全相同的是 ( D ) A. , B. , C. , D. , 5、在下列四个图形中,不能表示函数的图象的是 ( B ) 6、设 ,则 等于 ( D ) A. B. C. 1 D.0 7、已知函数 ,求 的值.( ) 函数数学教案7 三维目标 一、知识与技能 1能灵活列反比例函数表达式解决一些实际问题 2能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题 二、过程与方法 1经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题 2 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力 三、情感态度与价值观 1积极参与交流,并积极发表意见 2体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具 教学重点 掌握从物理问题中建构反比例函数模型 教学难点 从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想 教具准备 多媒体课件 教学过程 一、创设问题情境,引入新课 活动1 问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用下面的例子就是其中之一 在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R5欧姆时,电流I2安培 (1)求I与R之间的函数关系式; (2)当电流I0.5时,求电阻R的值 设计意图: 运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力 师生行为: 可由学生独立思考,领会反比例函数在物理学中的综合应用 教师应给“学困生”一点物理学知识的引导 师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值 生:(1)解:设IkR R5,I2,于是 2k5 ,所以k10,I10R (2) 当I0.5时,R10I100.5 20(欧姆) 师:很好!“给我一个支点,我可以把地球撬动”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢? 生:这是古希腊科学家阿基米德的名言 师:是的公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为; 阻力×阻力臂动力×动力臂(如下图) 下面我们就来看一例子 二、讲授新课 活动2 小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和05米 (1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力? (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少? 设计意图: 物理学中的很多量之间的变化是反比例函数关系因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用 师生行为: 先由学生根据“杠杆定律”解决上述问题 教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系 教师在此活动中应重点关注: 学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系; 学生能否面对困难,认真思考,寻找解题的途径; 学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣 师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题 生:解:(1)根据“杠杆定律” 有 Fl1200×0.5得F 600l 当l1.5时,F6001.5 400 因此,撬动石头至少需要400牛顿的力 (2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有 Fl600, l600F 当F400×12 200时, l600200 3 31.51.5(米) 因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米 生:也可用不等式来解,如下: Fl600,F600l 而F400×12 200时 600l 200 l3 所以l1.531.51.5 即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米 生:还可由函数图象,利用反比例函数的性质求出 师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题: 用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力? 生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂k(常数且k0),所以根据“杠杆定理”得Flk,即Fkl (k为常数且k0) 根据反比例函数的性质,当kO时,在第一象限F随l的增大而减小,即动力臂越长越省力 师:其实反比例函数在实际运用中非常广泛例如在解决经济预算问题中的应用 活动3 问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.550.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x04)元成反比例又当x065元时,y0.8(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少? 设计意图: 在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题 师生行为: 由学生先独立思考,然后小组内讨论完成 教师应给予“学困生”以一定的帮助 生:解:(1)y与x 04成反比例, 设ykx0.4 (k0) 把x0.65,y0.8代入ykx0.4 ,得 k0.650.4 0.8 解得k0.2, y0.2x0.415x2 y与x之间的函数关系为y15x2 (2)根据题意,本年度电力部门的纯收入为 (0.60.3)(1y)0.3(115x2 )0.3(110.6×52 )0.3×20.6(亿元) 答:本年度的纯收人为0.6亿元, 师生共析: (1)由题目提供的信息知y与(x0.4)之间是反比例函数关系,把x0.4看成一个变量,于是可设出表达式,再由题目的条件x0.65时,y0.8得出字母系数的值; (2)纯收入总收入总成本 三、巩固提高 活动4 一定质量的二氧化碳气体,其体积y(m3)是密度(kgm3)的反比例函数,请根据下图中的已知条件求出当密度1.1 kgm3时二氧化碳气体的体积V的值 设计意图: 进一步体现物理和反比例函数的关系 师生行为 由学生独立完成,教师讲评 师:若要求出1.1 kgm3时,V的值,首先V和的函数关系 生:V和的反比例函数关系为:V990 生:当1.1kgm3根据V990 ,得 V990 9901.1 900(m3) 所以当密度1. 1 kgm3时二氧化碳气体的气体为900m3 四、课时小结 活动5 你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得 设计意图: 这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性 师生行为: 学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流 教师组织学生小结 反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系 板书设计 172 实际问题与反比例函数(三) 1 2用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力? 设阻力为F1,阻力臂长为l1,所以F1×l1k(k为常数且k0)动力和动力臂分别为F,l则根据杠杆定理, Flk 即Fkl (k0且k为常数) 由此可知F是l的反比例函数,并且当k0时,F随l的增大而减小 活动与探究 学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示 (1)绿化带面积是多少?你能写出这一函数表达式吗? (2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内? x(m) 10 20 30 40 y(m) 过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值 结果:(1)绿化带面积为10×40400(m2) 设该反比例函数的表达式为ykx , 图象经过点A(40,10)把x40,y10代入,得10k40 ,解得,k400 函数表达式为y400x (2)把x10,20,30,40代入表达式中,求得y分别为40,20,403 ,10从图中可以看出。若长不超过40m,则它的宽应大于等于10m。 函数数学教案8 案例背景: 对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础. 案例叙述: (一).创设情境 (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数. 反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数. (提问):什么是指数函数?指数函数存在反函数吗? (学生): 是指数函数,它是存在反函数的. (师):求反函数的步骤 (由一个学生口答求反函数的过程): 由 得 .又 的值域为 , 所求反函数为 . (师):那么我们今天就是研究指数函数的反函数-对数函数. (二)新课 1.(板书) 定义:函数 的反函数 叫做对数函数. (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么? (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流) (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 . (在此基础上,我们将一起来研究对数函数的图像与性质.) 2.研究对数函数的图像与性质 (提问)用什么方法来画函数图像

    注意事项

    本文(函数数学教案.docx)为本站会员(33****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开